Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: dunzhang/stella_en_1.5B_v5
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 09f295eb7fd803c2_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/09f295eb7fd803c2_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: null
eval_max_new_tokens: 256
eval_steps: 5
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: gavrilstep/12675f81-3b44-4f77-93aa-ff943eceaa5b
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 75GiB
max_steps: 40
micro_batch_size: 2
mlflow_experiment_name: /tmp/09f295eb7fd803c2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: a727ab38-5312-4e68-8885-5980a4cae8a9
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: a727ab38-5312-4e68-8885-5980a4cae8a9
warmup_steps: 10
weight_decay: 0.01
xformers_attention: true

12675f81-3b44-4f77-93aa-ff943eceaa5b

This model is a fine-tuned version of dunzhang/stella_en_1.5B_v5 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 40

Training results

Training Loss Epoch Step Validation Loss
No log 0.0004 1 nan
0.0 0.0021 5 nan
0.0 0.0042 10 nan
0.0 0.0063 15 nan
0.0 0.0085 20 nan
0.0 0.0106 25 nan
0.0 0.0127 30 nan
0.0 0.0148 35 nan
0.0 0.0169 40 nan

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for gavrilstep/12675f81-3b44-4f77-93aa-ff943eceaa5b

Adapter
(86)
this model