Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: bigcode/starcoder2-3b
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 5e391603be93a47d_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/5e391603be93a47d_train_data.json
  type:
    field_instruction: message_1
    field_output: message_2
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: null
eval_max_new_tokens: 256
eval_steps: 5
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: gavrilstep/1cb81040-2c70-4379-be13-d71f2117e6d9
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 75GiB
max_steps: 40
micro_batch_size: 2
mlflow_experiment_name: /tmp/5e391603be93a47d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 10
sequence_len: 1024
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: true
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 6fc52b6f-be23-497d-bf5f-66b86976aa7a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 6fc52b6f-be23-497d-bf5f-66b86976aa7a
warmup_steps: 10
weight_decay: 0.01
xformers_attention: true

1cb81040-2c70-4379-be13-d71f2117e6d9

This model is a fine-tuned version of bigcode/starcoder2-3b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0250

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 40

Training results

Training Loss Epoch Step Validation Loss
No log 0.0004 1 1.0712
13.5418 0.0021 5 1.0629
13.0737 0.0043 10 1.0564
8.3704 0.0064 15 1.1004
7.8117 0.0085 20 1.0614
7.176 0.0106 25 1.0387
6.8559 0.0128 30 1.0288
6.0332 0.0149 35 1.0259
6.0404 0.0170 40 1.0250

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for gavrilstep/1cb81040-2c70-4379-be13-d71f2117e6d9

Adapter
(199)
this model