🤗 + polibert_SA - POLItic BERT based Sentiment Analysis
Model description
This model performs sentiment analysis on Italian political twitter sentences. It was trained starting from an instance of "bert-base-italian-uncased-xxl" and fine-tuned on an Italian dataset of tweets. You can try it out at https://www.unideeplearning.com/twitter_sa/ (in italian!)
Hands-on
import torch
from torch import nn
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("unideeplearning/polibert_sa")
model = AutoModelForSequenceClassification.from_pretrained("unideeplearning/polibert_sa")
text = "Giuseppe Rossi è un pessimo politico"
input_ids = tokenizer.encode(text, add_special_tokens=True, return_tensors= 'pt')
logits, = model(input_ids)
logits = logits.squeeze(0)
prob = nn.functional.softmax(logits, dim=0)
# 0 Negative, 1 Neutral, 2 Positive
print(prob.argmax().tolist())
Hyperparameters
- Optimizer: AdamW with learning rate of 2e-5, epsilon of 1e-8
- Max epochs: 2
- Batch size: 16
Acknowledgments
Thanks to the support from: the Hugging Face, https://www.unioneprofessionisti.com
- Downloads last month
- 177
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.