whisper-large-v2-az / README.md
geninhu's picture
update model card README.md
3788a0a
|
raw
history blame
2.19 kB
metadata
language:
  - az
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Large v2 Azerbaijani
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 az
          type: mozilla-foundation/common_voice_11_0
          config: az
          split: test
          args: az
        metrics:
          - name: Wer
            type: wer
            value: 38.46153846153847

Whisper Large v2 Azerbaijani

This model is a fine-tuned version of openai/whisper-large-v2 on the mozilla-foundation/common_voice_11_0 az dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9435
  • Wer: 38.4615

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0 999.0 1000 0.8373 39.6450
0.0 1999.0 2000 0.9435 38.4615
0.0 2999.0 3000 1.0010 43.1953
0.0 3999.0 4000 1.0380 44.3787
0.0 4999.0 5000 1.0529 43.7870

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2