|
--- |
|
language: |
|
- vi |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- mozilla-foundation/common_voice_11_0 |
|
metrics: |
|
- wer |
|
base_model: openai/whisper-large-v2 |
|
model-index: |
|
- name: openai/whisper-large-v2 |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Automatic Speech Recognition |
|
dataset: |
|
name: mozilla-foundation/common_voice_11_0 vi |
|
type: mozilla-foundation/common_voice_11_0 |
|
config: vi |
|
split: test |
|
args: vi |
|
metrics: |
|
- type: wer |
|
value: 15.771 |
|
name: Wer |
|
- type: cer |
|
value: 7.6691 |
|
name: Cer |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# openai/whisper-large-v2 |
|
|
|
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4041 |
|
- Wer: 15.7710 |
|
- Cer: 7.6691 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
Training data: |
|
* [mozilla-foundation/common_voice_11_0](https://huggingface.co/openai/whisper-large-v2) |
|
* [google/fleurs](https://huggingface.co/datasets/google/fleurs) |
|
|
|
Evaluation data: |
|
* [mozilla-foundation/common_voice_11_0](https://huggingface.co/openai/whisper-large-v2) |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-07 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 3 |
|
- total_train_batch_size: 24 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 5000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| |
|
| 0.3983 | 0.1 | 500 | 0.5338 | 19.5876 | 10.6391 | |
|
| 0.2277 | 1.08 | 1000 | 0.4134 | 16.5826 | 8.2668 | |
|
| 0.172 | 2.05 | 1500 | 0.3968 | 16.3084 | 7.9787 | |
|
| 0.1823 | 3.03 | 2000 | 0.3956 | 16.1768 | 7.8159 | |
|
| 0.1445 | 4.0 | 2500 | 0.3955 | 16.0342 | 7.7438 | |
|
| 0.147 | 4.1 | 3000 | 0.3965 | 15.8807 | 7.7145 | |
|
| 0.1292 | 5.08 | 3500 | 0.4000 | 15.8587 | 7.7065 | |
|
| 0.1187 | 6.05 | 4000 | 0.4029 | 15.7491 | 7.6398 | |
|
| 0.1368 | 7.03 | 4500 | 0.4041 | 15.7600 | 7.6558 | |
|
| 0.1231 | 8.0 | 5000 | 0.4041 | 15.7710 | 7.6691 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0.dev0 |
|
- Pytorch 1.13.0+cu117 |
|
- Datasets 2.7.1.dev0 |
|
- Tokenizers 0.13.2 |
|
|