|
--- |
|
pipeline_tag: sentence-similarity |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
datasets: |
|
- genta-tech/qnli-id |
|
- genta-tech/boolq-id |
|
- genta-tech/squad_pairs_indo |
|
license: apache-2.0 |
|
language: |
|
- id |
|
library_name: sentence-transformers |
|
--- |
|
|
|
# genta-tech/indobert-base-qnli |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model based on pretrained [IndoBERT](https://huggingface.co/indolem/indobert-base-uncased) model by [IndoLEM](https://indolem.github.io/): It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. This model specifically trained on questio-passage pairs dataset making it work best on question-passage input, if you need a model on sentence-sentence pairs input please check [genta-tech/indobert-base-snli](https://huggingface.co/genta-tech/indobert-base-snli). |
|
|
|
<!--- Describe your model here --> |
|
|
|
## Usage (Sentence-Transformers) |
|
|
|
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: |
|
|
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
sentences = ["This is an example sentence", "Each sentence is converted"] |
|
|
|
model = SentenceTransformer('genta-tech/indobert-base-qnli') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
|
|
|
|
## Usage (HuggingFace Transformers) |
|
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
|
|
#Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] #First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
|
|
# Sentences we want sentence embeddings for |
|
sentences = ['This is an example sentence', 'Each sentence is converted'] |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('genta-tech/indobert-base-qnli') |
|
model = AutoModel.from_pretrained('genta-tech/indobert-base-qnli') |
|
|
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
|
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
|
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
|
|
|
|
## Evaluation Results |
|
|
|
<!--- Describe how your model was evaluated --> |
|
|
|
This model is not currently evaluated. |
|
|
|
## Training |
|
The model was trained with the parameters: |
|
|
|
**DataLoader**: |
|
|
|
`torch.utils.data.dataloader.DataLoader` of length 5475 with parameters: |
|
``` |
|
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} |
|
``` |
|
|
|
**Loss**: |
|
|
|
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: |
|
``` |
|
{'scale': 20.0, 'similarity_fct': 'cos_sim'} |
|
``` |
|
|
|
Parameters of the fit()-Method: |
|
``` |
|
{ |
|
"epochs": 10, |
|
"evaluation_steps": 0, |
|
"evaluator": "NoneType", |
|
"max_grad_norm": 1, |
|
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>", |
|
"optimizer_params": { |
|
"lr": 2e-05 |
|
}, |
|
"scheduler": "WarmupLinear", |
|
"steps_per_epoch": null, |
|
"warmup_steps": 10000, |
|
"weight_decay": 0.01 |
|
} |
|
``` |
|
|
|
|
|
## Full Model Architecture |
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) |
|
) |
|
``` |
|
|
|
## Citing & Authors |
|
|
|
<!--- Describe where people can find more information --> |
|
|
|
``` |
|
@inproceedings{koto2020indolem, |
|
title={IndoLEM and IndoBERT: A Benchmark Dataset and Pre-trained Language Model for Indonesian NLP}, |
|
author={Fajri Koto and Afshin Rahimi and Jey Han Lau and Timothy Baldwin}, |
|
booktitle={Proceedings of the 28th COLING}, |
|
year={2020} |
|
} |
|
@article{warstadt2018neural, |
|
title={Neural Network Acceptability Judgments}, |
|
author={Warstadt, Alex and Singh, Amanpreet and Bowman, Samuel R}, |
|
journal={arXiv preprint arXiv:1805.12471}, |
|
year={2018} |
|
} |
|
@inproceedings{wang2019glue, |
|
title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding}, |
|
author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.}, |
|
note={In the Proceedings of ICLR.}, |
|
year={2019} |
|
} |
|
@inproceedings{clark2019boolq, |
|
title={BoolQ: Exploring the Surprising Difficulty of Natural Yes/No Questions}, |
|
author={Clark, Christopher and Lee, Kenton and Chang, Ming-Wei, and Kwiatkowski, Tom and Collins, Michael, and Toutanova, Kristina}, |
|
booktitle={NAACL}, |
|
year={2019} |
|
} |
|
@article{wang2019superglue, |
|
title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, |
|
author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, |
|
journal={arXiv preprint arXiv:1905.00537}, |
|
year={2019} |
|
} |
|
``` |