|
--- |
|
license: apache-2.0 |
|
library_name: sklearn |
|
tags: |
|
- sklearn |
|
- skops |
|
- tabular-classification |
|
model_format: pickle |
|
model_file: skops-xwel2v4p.pkl |
|
widget: |
|
- structuredData: |
|
age: |
|
- 40 |
|
- 21 |
|
- 55 |
|
alamine_aminotransferase: |
|
- 232 |
|
- 36 |
|
- 112 |
|
albumin_and_globulin_ratio: |
|
- 0.8 |
|
- 1.34 |
|
- 0.8 |
|
alkaline_phosphotase: |
|
- 293 |
|
- 150 |
|
- 482 |
|
gender: |
|
- 0 |
|
- 1 |
|
- 1 |
|
total_bilirubin: |
|
- 0.9 |
|
- 3.9 |
|
- 0.8 |
|
--- |
|
|
|
# Model description |
|
|
|
This model was created following the instructions in the following Kaggle notebook: |
|
|
|
https://www.kaggle.com/code/michalbrezk/xgboost-classifier-and-hyperparameter-tuning-85 |
|
|
|
The possible classified predictions are: 'Non liver patient', 'Liver patient' |
|
|
|
The predictors are: age, gender, total_bilirubin, alkaline_phosphotase, alamine_aminotransferase, albumin_and_globulin_ratio |
|
|
|
## Intended uses & limitations |
|
|
|
This model follows the limitations of the Apache 2.0 license. |
|
|
|
### Hyperparameters |
|
|
|
<details> |
|
<summary> Click to expand </summary> |
|
|
|
| Hyperparameter | Value | |
|
|--------------------------|---------| |
|
| bootstrap | False | |
|
| ccp_alpha | 0.0 | |
|
| class_weight | | |
|
| criterion | gini | |
|
| max_depth | | |
|
| max_features | sqrt | |
|
| max_leaf_nodes | | |
|
| max_samples | | |
|
| min_impurity_decrease | 0.0 | |
|
| min_samples_leaf | 1 | |
|
| min_samples_split | 2 | |
|
| min_weight_fraction_leaf | 0.0 | |
|
| n_estimators | 100 | |
|
| n_jobs | | |
|
| oob_score | False | |
|
| random_state | 123 | |
|
| verbose | 0 | |
|
| warm_start | False | |
|
|
|
</details> |
|
|
|
### Model Plot |
|
|
|
<style>#sk-container-id-1 {color: black;background-color: white;}#sk-container-id-1 pre{padding: 0;}#sk-container-id-1 div.sk-toggleable {background-color: white;}#sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-1 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-1 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-1 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-1 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-1 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-1 div.sk-item {position: relative;z-index: 1;}#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-1 div.sk-item::before, #sk-container-id-1 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-1 div.sk-label-container {text-align: center;}#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-1 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>ExtraTreesClassifier(random_state=123)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" checked><label for="sk-estimator-id-1" class="sk-toggleable__label sk-toggleable__label-arrow">ExtraTreesClassifier</label><div class="sk-toggleable__content"><pre>ExtraTreesClassifier(random_state=123)</pre></div></div></div></div></div> |
|
|
|
## Evaluation Results |
|
|
|
| Metric | Value | |
|
|----------|----------| |
|
| accuracy | 0.836538 | |
|
| f1 score | 0.836538 | |
|
|
|
### Model description/Evaluation Results/Classification report |
|
|
|
| index | precision | recall | f1-score | support | |
|
|-------------------|-------------|----------|------------|-----------| |
|
| Liver patient | 0.814159 | 0.87619 | 0.844037 | 105 | |
|
| Non liver patient | 0.863158 | 0.796117 | 0.828283 | 103 | |
|
| macro avg | 0.838659 | 0.836153 | 0.83616 | 208 | |
|
| weighted avg | 0.838423 | 0.836538 | 0.836236 | 208 | |
|
|
|
# How to Get Started with the Model |
|
|
|
To use the AI model run the following code on Google Colab: |
|
|
|
https://colab.research.google.com/drive/1OKyEMTrrBqjdc9_3wgnn_ZHaRYMmr7mx?usp=sharing |
|
|
|
|
|
|
|
|