distilhubert-audio-course-finetuned-gtzan-v5
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.9236
- Accuracy: 0.87
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.7
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.2989 | 0.99 | 56 | 2.2882 | 0.11 |
2.2716 | 2.0 | 113 | 2.2469 | 0.31 |
2.1919 | 2.99 | 169 | 2.1317 | 0.4 |
2.0117 | 4.0 | 226 | 1.9244 | 0.53 |
1.7966 | 4.99 | 282 | 1.7315 | 0.65 |
1.6379 | 6.0 | 339 | 1.5920 | 0.59 |
1.4496 | 6.99 | 395 | 1.3539 | 0.71 |
1.3264 | 8.0 | 452 | 1.1879 | 0.7 |
1.0601 | 8.99 | 508 | 1.1342 | 0.7 |
0.9737 | 10.0 | 565 | 0.9209 | 0.79 |
0.7915 | 10.99 | 621 | 0.8768 | 0.74 |
0.6432 | 12.0 | 678 | 0.8060 | 0.8 |
0.5217 | 12.99 | 734 | 0.6562 | 0.85 |
0.3335 | 14.0 | 791 | 0.7744 | 0.76 |
0.2866 | 14.99 | 847 | 0.6969 | 0.82 |
0.1425 | 16.0 | 904 | 0.6378 | 0.82 |
0.1278 | 16.99 | 960 | 0.6972 | 0.82 |
0.0706 | 18.0 | 1017 | 0.7328 | 0.84 |
0.0301 | 18.99 | 1073 | 0.9245 | 0.76 |
0.0379 | 20.0 | 1130 | 0.8437 | 0.85 |
0.0147 | 20.99 | 1186 | 0.7489 | 0.83 |
0.0067 | 22.0 | 1243 | 0.8975 | 0.83 |
0.0049 | 22.99 | 1299 | 1.1788 | 0.81 |
0.0038 | 24.0 | 1356 | 1.1146 | 0.81 |
0.0028 | 24.99 | 1412 | 1.0270 | 0.85 |
0.0027 | 26.0 | 1469 | 1.0634 | 0.83 |
0.0024 | 26.99 | 1525 | 1.0220 | 0.84 |
0.0023 | 28.0 | 1582 | 1.0282 | 0.83 |
0.0487 | 28.99 | 1638 | 1.0735 | 0.82 |
0.0458 | 30.0 | 1695 | 1.1198 | 0.82 |
0.2453 | 30.99 | 1751 | 1.1154 | 0.81 |
0.0552 | 32.0 | 1808 | 1.1630 | 0.79 |
0.1202 | 32.99 | 1864 | 1.2746 | 0.81 |
0.2709 | 34.0 | 1921 | 1.3797 | 0.79 |
0.275 | 34.99 | 1977 | 1.5372 | 0.75 |
0.1268 | 36.0 | 2034 | 0.8140 | 0.86 |
0.1582 | 36.99 | 2090 | 1.4153 | 0.77 |
0.0054 | 38.0 | 2147 | 1.3796 | 0.79 |
0.0299 | 38.99 | 2203 | 1.3653 | 0.78 |
0.0199 | 40.0 | 2260 | 0.9987 | 0.87 |
0.0021 | 40.99 | 2316 | 1.0689 | 0.84 |
0.0007 | 42.0 | 2373 | 1.0383 | 0.85 |
0.0006 | 42.99 | 2429 | 1.0493 | 0.84 |
0.0006 | 44.0 | 2486 | 1.0744 | 0.85 |
0.0005 | 44.99 | 2542 | 0.9151 | 0.86 |
0.0004 | 46.0 | 2599 | 0.8946 | 0.87 |
0.01 | 46.99 | 2655 | 0.8960 | 0.88 |
0.0073 | 48.0 | 2712 | 0.9485 | 0.87 |
0.0004 | 48.99 | 2768 | 0.9247 | 0.87 |
0.0004 | 49.56 | 2800 | 0.9236 | 0.87 |
Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for gigant/distilhubert-audio-course-finetuned-gtzan-v5
Base model
ntu-spml/distilhubert