a2c-PandaReachDense-v2 / config.json
giggling-squid's picture
Initial commit
8c98a88
raw
history blame
15.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fe4b55674c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fe4b5569280>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1681046615214141097, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAnprNPjhRojwuXgk/nprNPjhRojwuXgk/nprNPjhRojwuXgk/nprNPjhRojwuXgk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAX3lIvrkhDj+sNFu9rgBDv+zTDD/764U/mXauvwbavT/wcoE+18Qjv8j/FL9lCWm/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACems0+OFGiPC5eCT/gmJQ9C6anOmmWaD2ems0+OFGiPC5eCT/gmJQ9C6anOmmWaD2ems0+OFGiPC5eCT/gmJQ9C6anOmmWaD2ems0+OFGiPC5eCT/gmJQ9C6anOmmWaD2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.40157026 0.01981412 0.5365933 ]\n [0.40157026 0.01981412 0.5365933 ]\n [0.40157026 0.01981412 0.5365933 ]\n [0.40157026 0.01981412 0.5365933 ]]", "desired_goal": "[[-0.1957755 0.55520207 -0.05351703]\n [-0.7617291 0.5501087 1.046264 ]\n [-1.3629943 1.483216 0.25283003]\n [-0.6397223 -0.5820279 -0.9102996 ]]", "observation": "[[0.40157026 0.01981412 0.5365933 0.07255721 0.00127906 0.05678407]\n [0.40157026 0.01981412 0.5365933 0.07255721 0.00127906 0.05678407]\n [0.40157026 0.01981412 0.5365933 0.07255721 0.00127906 0.05678407]\n [0.40157026 0.01981412 0.5365933 0.07255721 0.00127906 0.05678407]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA/0kPPvzC+r3RBi8+8S/sPfbivr3hu4M+/MIVPtUdTb3HmV48h41TPS2awL240pc+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.13993071 -0.12244222 0.17092444]\n [ 0.11532582 -0.09320633 0.25729278]\n [ 0.14625162 -0.05007728 0.01358647]\n [ 0.05164864 -0.09404407 0.29652953]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/rrTnSee+L+UhpRSlIwBbJRLMowBdJRHQLGOVawD/2l1fZQoaAZoCWgPQwjg2/RnP1L1v5SGlFKUaBVLMmgWR0CxjjYDgZTAdX2UKGgGaAloD0MI3xXB/1by8b+UhpRSlGgVSzJoFkdAsY4YV/MGHHV9lChoBmgJaA9DCN3OvvIgvei/lIaUUpRoFUsyaBZHQLGN+FL39Jl1fZQoaAZoCWgPQwjtKw/SU+Tqv5SGlFKUaBVLMmgWR0CxjwsiW3SbdX2UKGgGaAloD0MIJJf/kH57+r+UhpRSlGgVSzJoFkdAsY7r5Lytm3V9lChoBmgJaA9DCGU1XU903eu/lIaUUpRoFUsyaBZHQLGOzrzoUzt1fZQoaAZoCWgPQwiwkSQIV0Dvv5SGlFKUaBVLMmgWR0Cxjq8wtapxdX2UKGgGaAloD0MI+dozSwJU67+UhpRSlGgVSzJoFkdAsY/dz5oGp3V9lChoBmgJaA9DCAtET8qkhvi/lIaUUpRoFUsyaBZHQLGPvnyd4FB1fZQoaAZoCWgPQwgShZZ1/1jsv5SGlFKUaBVLMmgWR0Cxj6EovzvrdX2UKGgGaAloD0MIu9Bcp5EW8L+UhpRSlGgVSzJoFkdAsY+BpPAO8XV9lChoBmgJaA9DCAQcQpWavfi/lIaUUpRoFUsyaBZHQLGQt4/NZ/11fZQoaAZoCWgPQwh5HtydtVvrv5SGlFKUaBVLMmgWR0CxkJhczImxdX2UKGgGaAloD0MImxvTE5Z447+UhpRSlGgVSzJoFkdAsZB7OY6XB3V9lChoBmgJaA9DCNQLPs3JS/i/lIaUUpRoFUsyaBZHQLGQW62v0RR1fZQoaAZoCWgPQwh/F7ZmKy/mv5SGlFKUaBVLMmgWR0CxkZXd0q6OdX2UKGgGaAloD0MIujKoNjgR6r+UhpRSlGgVSzJoFkdAsZF3F1jiGXV9lChoBmgJaA9DCDj1geSdA/C/lIaUUpRoFUsyaBZHQLGRWi8nNPh1fZQoaAZoCWgPQwhAFTduMT/vv5SGlFKUaBVLMmgWR0CxkTqoybhFdX2UKGgGaAloD0MICU/o9Sex8b+UhpRSlGgVSzJoFkdAsZKA4ku6E3V9lChoBmgJaA9DCAwiUtMuBgHAlIaUUpRoFUsyaBZHQLGSYbI91U51fZQoaAZoCWgPQwha8nhafuD0v5SGlFKUaBVLMmgWR0CxkkSVObiIdX2UKGgGaAloD0MIgNjSo6ne8b+UhpRSlGgVSzJoFkdAsZIlIvrWy3V9lChoBmgJaA9DCDCca5ih8ci/lIaUUpRoFUsyaBZHQLGTaPgeii91fZQoaAZoCWgPQwhtcvikEwnzv5SGlFKUaBVLMmgWR0Cxk0m1D0DmdX2UKGgGaAloD0MIqu/8ogT91L+UhpRSlGgVSzJoFkdAsZMslJHy3HV9lChoBmgJaA9DCHKo34WtWfG/lIaUUpRoFUsyaBZHQLGTDSRKYiR1fZQoaAZoCWgPQwjW/WMhOgT0v5SGlFKUaBVLMmgWR0CxlAJjYqXodX2UKGgGaAloD0MIswxxrItb7L+UhpRSlGgVSzJoFkdAsZPi0D2alXV9lChoBmgJaA9DCEz/klSmGOy/lIaUUpRoFUsyaBZHQLGTxUOd5IJ1fZQoaAZoCWgPQwgeUaG6ufjrv5SGlFKUaBVLMmgWR0Cxk6VRceKbdX2UKGgGaAloD0MITcCvkSQI0r+UhpRSlGgVSzJoFkdAsZSIfdRBNXV9lChoBmgJaA9DCFPKayV0l/S/lIaUUpRoFUsyaBZHQLGUaNRWLgp1fZQoaAZoCWgPQwiWlpF6T2X0v5SGlFKUaBVLMmgWR0CxlEs/pt78dX2UKGgGaAloD0MID2Q9tfpq4r+UhpRSlGgVSzJoFkdAsZQrTYukDnV9lChoBmgJaA9DCDI7i96pgOS/lIaUUpRoFUsyaBZHQLGVEFYdQwd1fZQoaAZoCWgPQwhYG2MnvITrv5SGlFKUaBVLMmgWR0CxlPCpFTegdX2UKGgGaAloD0MIH5+Qnbex+b+UhpRSlGgVSzJoFkdAsZTTEUCaJHV9lChoBmgJaA9DCCKKyRtgZue/lIaUUpRoFUsyaBZHQLGUsylN1yN1fZQoaAZoCWgPQwhh4STNH5P5v5SGlFKUaBVLMmgWR0CxlZL6tT1kdX2UKGgGaAloD0MIRBmqYir917+UhpRSlGgVSzJoFkdAsZVzTuv2XnV9lChoBmgJaA9DCBWOIJViJwHAlIaUUpRoFUsyaBZHQLGVVbKzRhN1fZQoaAZoCWgPQwhjf9k9eVj5v5SGlFKUaBVLMmgWR0CxlTXEuQIVdX2UKGgGaAloD0MIHVvPEI5Z2L+UhpRSlGgVSzJoFkdAsZYdS1mapnV9lChoBmgJaA9DCBsS91j6UOq/lIaUUpRoFUsyaBZHQLGV/a3I+4d1fZQoaAZoCWgPQwhUHAdeLXfuv5SGlFKUaBVLMmgWR0CxleAkcCHRdX2UKGgGaAloD0MIgNWRI50B7L+UhpRSlGgVSzJoFkdAsZXATBZZCHV9lChoBmgJaA9DCCtM32sIjvu/lIaUUpRoFUsyaBZHQLGWomQKa5R1fZQoaAZoCWgPQwjP9BJjmf71v5SGlFKUaBVLMmgWR0CxloKwhW5pdX2UKGgGaAloD0MINjy9UpYh7L+UhpRSlGgVSzJoFkdAsZZlGG21D3V9lChoBmgJaA9DCA2oN6PmK+u/lIaUUpRoFUsyaBZHQLGWRTewcHZ1fZQoaAZoCWgPQwiCxkyiXrDwv5SGlFKUaBVLMmgWR0CxlysyeqaPdX2UKGgGaAloD0MIRWKCGr6F7L+UhpRSlGgVSzJoFkdAsZcLkJa7mXV9lChoBmgJaA9DCARUOIJUitS/lIaUUpRoFUsyaBZHQLGW7gow22p1fZQoaAZoCWgPQwjt153uPPHvv5SGlFKUaBVLMmgWR0Cxls4nfEXMdX2UKGgGaAloD0MIWWsotRfR47+UhpRSlGgVSzJoFkdAsZe+KziS73V9lChoBmgJaA9DCGFtjJ3w0vW/lIaUUpRoFUsyaBZHQLGXnwN9YwJ1fZQoaAZoCWgPQwiLiGLyBpjnv5SGlFKUaBVLMmgWR0Cxl4GHk92YdX2UKGgGaAloD0MILv62J0is8b+UhpRSlGgVSzJoFkdAsZdhjqfOEHV9lChoBmgJaA9DCLtiRnh7EOq/lIaUUpRoFUsyaBZHQLGYP79AHFB1fZQoaAZoCWgPQwgBMnTsoNL6v5SGlFKUaBVLMmgWR0CxmCAS8J2MdX2UKGgGaAloD0MIppnudVLf77+UhpRSlGgVSzJoFkdAsZgCkJrtV3V9lChoBmgJaA9DCD/ggQGED+i/lIaUUpRoFUsyaBZHQLGX4qYqoZR1fZQoaAZoCWgPQwiR0QFJ2Dfrv5SGlFKUaBVLMmgWR0CxmLjN+so2dX2UKGgGaAloD0MIb4RFRZyO9b+UhpRSlGgVSzJoFkdAsZiZFkQPJHV9lChoBmgJaA9DCFuzlZf8z+u/lIaUUpRoFUsyaBZHQLGYe7fYSQJ1fZQoaAZoCWgPQwiWW1oNiTv5v5SGlFKUaBVLMmgWR0CxmFvn8sMBdX2UKGgGaAloD0MIpwNZT60+9b+UhpRSlGgVSzJoFkdAsZk3gsK9f3V9lChoBmgJaA9DCFggelImdfG/lIaUUpRoFUsyaBZHQLGZF9sJpnJ1fZQoaAZoCWgPQwj1DyIZcmzyv5SGlFKUaBVLMmgWR0CxmPomsvIwdX2UKGgGaAloD0MIUYiAQ6gS8b+UhpRSlGgVSzJoFkdAsZjaLhrFfnV9lChoBmgJaA9DCABw7Nlzmeu/lIaUUpRoFUsyaBZHQLGZq+/gzgx1fZQoaAZoCWgPQwj4NZIE4Yr0v5SGlFKUaBVLMmgWR0CxmYw08/2TdX2UKGgGaAloD0MIsAER4srZ9r+UhpRSlGgVSzJoFkdAsZlumHgxanV9lChoBmgJaA9DCINqgxPRr/2/lIaUUpRoFUsyaBZHQLGZTrMkhRt1fZQoaAZoCWgPQwgip6/naxb0v5SGlFKUaBVLMmgWR0Cxmil09yLidX2UKGgGaAloD0MIMLq8OVzr+L+UhpRSlGgVSzJoFkdAsZoJqveP73V9lChoBmgJaA9DCE91yM1wAwDAlIaUUpRoFUsyaBZHQLGZ6/sE7nx1fZQoaAZoCWgPQwhfe2ZJgJrtv5SGlFKUaBVLMmgWR0CxmcwPAfuDdX2UKGgGaAloD0MIeozyzMvh9L+UhpRSlGgVSzJoFkdAsZqiHHmzSnV9lChoBmgJaA9DCDGXVG03wQDAlIaUUpRoFUsyaBZHQLGagpobn5l1fZQoaAZoCWgPQwj8q8d9q3X1v5SGlFKUaBVLMmgWR0CxmmT2OAAidX2UKGgGaAloD0MIx2gdVU2Q8b+UhpRSlGgVSzJoFkdAsZpFIEr5I3V9lChoBmgJaA9DCBReglMfyPG/lIaUUpRoFUsyaBZHQLGbHvkRzzV1fZQoaAZoCWgPQwgPCd/7GzT4v5SGlFKUaBVLMmgWR0Cxmv8wQDmsdX2UKGgGaAloD0MIGapiKv1E9b+UhpRSlGgVSzJoFkdAsZrhkf9xZXV9lChoBmgJaA9DCNjviXWq/OW/lIaUUpRoFUsyaBZHQLGawZVn27F1fZQoaAZoCWgPQwhqhlRRvMrev5SGlFKUaBVLMmgWR0Cxm55LEk0KdX2UKGgGaAloD0MI3/yGiQap5b+UhpRSlGgVSzJoFkdAsZt+nMt9QXV9lChoBmgJaA9DCEEsmzkkNey/lIaUUpRoFUsyaBZHQLGbYROk+HJ1fZQoaAZoCWgPQwieYtUgzO3vv5SGlFKUaBVLMmgWR0Cxm0FfAsTWdX2UKGgGaAloD0MIaeId4EmL6b+UhpRSlGgVSzJoFkdAsZwwAS39aXV9lChoBmgJaA9DCD6uDRXjPP6/lIaUUpRoFUsyaBZHQLGcEMcp9Z11fZQoaAZoCWgPQwhMNbOWApL5v5SGlFKUaBVLMmgWR0Cxm/MguAZsdX2UKGgGaAloD0MIbTZWYp7V8b+UhpRSlGgVSzJoFkdAsZvTO6d1+3V9lChoBmgJaA9DCPcdw2M/i/O/lIaUUpRoFUsyaBZHQLGcuFo+Ofd1fZQoaAZoCWgPQwjxg/OpY5Xyv5SGlFKUaBVLMmgWR0CxnJjDO1OTdX2UKGgGaAloD0MI3h0Zq83/67+UhpRSlGgVSzJoFkdAsZx7HMlkY3V9lChoBmgJaA9DCC2Xjc75qeO/lIaUUpRoFUsyaBZHQLGcW0GNaQp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 46875, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}