SahabatAI-Lion-9B-TIES-v1
formerly gemma2-9b-cpt-sahabatai-v1-instruct-BaseTIES (too long :D )
Based on some research, when a finetuned model is merged with its base model with TIES method, there is possibility the merged model will achieve better output.
UPDATE!!! as 20 November 2024, this model is third best model on HF's Open LLM Leaderboard (with Merge/MoErges hide model unchecked) for LLM model below 10B parameters.
gmonsoon/SahabatAI-Lion-9B-TIES-v1 is a merge of the following models:
DEMO Spaces: HERE
𧩠Configuration
models:
- model: GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct
parameters:
weight: 1
density: 1
- model: GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct
parameters:
weight: 1
density: 1
merge_method: ties
base_model: aisingapore/gemma2-9b-cpt-sea-lionv3-instruct
parameters:
density: 1
normalize: true
int8_mask: true
dtype: bfloat16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "gmonsoon/SahabatAI-Lion-9B-TIES-v1"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 33.70 |
IFEval (0-Shot) | 73.78 |
BBH (3-Shot) | 43.40 |
MATH Lvl 5 (4-Shot) | 19.34 |
GPQA (0-shot) | 9.40 |
MuSR (0-shot) | 19.13 |
MMLU-PRO (5-shot) | 37.19 |
- Downloads last month
- 104
Model tree for gmonsoon/SahabatAI-Lion-9B-TIES-v1
Merge model
this model
Space using gmonsoon/SahabatAI-Lion-9B-TIES-v1 1
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard73.780
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard43.400
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard19.340
- acc_norm on GPQA (0-shot)Open LLM Leaderboard9.400
- acc_norm on MuSR (0-shot)Open LLM Leaderboard19.130
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard37.190