gmonsoon commited on
Commit
a3faec2
1 Parent(s): 99d2545

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +62 -0
README.md ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model:
3
+ - GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct
4
+ - GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct
5
+ tags:
6
+ - merge
7
+ - mergekit
8
+ - lazymergekit
9
+ - GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct
10
+ ---
11
+
12
+ # gemma2-9b-sahabatai-v1-instruct-BaseTIES
13
+
14
+ gemma2-9b-sahabatai-v1-instruct-BaseTIES is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
15
+ * [GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct](https://huggingface.co/GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct)
16
+ * [GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct](https://huggingface.co/GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct)
17
+
18
+ ## 🧩 Configuration
19
+
20
+ ```yaml
21
+ models:
22
+ - model: GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct
23
+ parameters:
24
+ weight: 1
25
+ density: 1
26
+ - model: GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct
27
+ parameters:
28
+ weight: 1
29
+ density: 1
30
+ merge_method: ties
31
+ base_model: aisingapore/gemma2-9b-cpt-sea-lionv3-instruct
32
+ parameters:
33
+ density: 1
34
+ normalize: true
35
+ int8_mask: true
36
+ dtype: bfloat16
37
+ ```
38
+
39
+ ## 💻 Usage
40
+
41
+ ```python
42
+ !pip install -qU transformers accelerate
43
+
44
+ from transformers import AutoTokenizer
45
+ import transformers
46
+ import torch
47
+
48
+ model = "gmonsoon/gemma2-9b-sahabatai-v1-instruct-BaseTIES"
49
+ messages = [{"role": "user", "content": "What is a large language model?"}]
50
+
51
+ tokenizer = AutoTokenizer.from_pretrained(model)
52
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
53
+ pipeline = transformers.pipeline(
54
+ "text-generation",
55
+ model=model,
56
+ torch_dtype=torch.float16,
57
+ device_map="auto",
58
+ )
59
+
60
+ outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
61
+ print(outputs[0]["generated_text"])
62
+ ```