|
_base_ = ['../../../configs/_base_/default_runtime.py'] |
|
|
|
custom_imports = dict(imports=['projects.NeRF-Det.nerfdet']) |
|
prior_generator = dict( |
|
type='AlignedAnchor3DRangeGenerator', |
|
ranges=[[-3.2, -3.2, -1.28, 3.2, 3.2, 1.28]], |
|
rotations=[.0]) |
|
|
|
model = dict( |
|
type='NerfDet', |
|
data_preprocessor=dict( |
|
type='NeRFDetDataPreprocessor', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[58.395, 57.12, 57.375], |
|
bgr_to_rgb=True, |
|
pad_size_divisor=10), |
|
backbone=dict( |
|
type='mmdet.ResNet', |
|
depth=101, |
|
num_stages=4, |
|
out_indices=(0, 1, 2, 3), |
|
frozen_stages=1, |
|
norm_cfg=dict(type='BN', requires_grad=False), |
|
norm_eval=True, |
|
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101'), |
|
style='pytorch'), |
|
neck=dict( |
|
type='mmdet.FPN', |
|
in_channels=[256, 512, 1024, 2048], |
|
out_channels=256, |
|
num_outs=4), |
|
neck_3d=dict( |
|
type='IndoorImVoxelNeck', |
|
in_channels=256, |
|
out_channels=128, |
|
n_blocks=[1, 1, 1]), |
|
bbox_head=dict( |
|
type='NerfDetHead', |
|
bbox_loss=dict(type='AxisAlignedIoULoss', loss_weight=1.0), |
|
n_classes=18, |
|
n_levels=3, |
|
n_channels=128, |
|
n_reg_outs=6, |
|
pts_assign_threshold=27, |
|
pts_center_threshold=18, |
|
prior_generator=prior_generator), |
|
prior_generator=prior_generator, |
|
voxel_size=[.16, .16, .2], |
|
n_voxels=[40, 40, 16], |
|
aabb=([-2.7, -2.7, -0.78], [3.7, 3.7, 1.78]), |
|
near_far_range=[0.2, 8.0], |
|
N_samples=64, |
|
N_rand=2048, |
|
nerf_mode='image', |
|
depth_supervise=True, |
|
use_nerf_mask=True, |
|
nerf_sample_view=20, |
|
squeeze_scale=4, |
|
nerf_density=True, |
|
train_cfg=dict(), |
|
test_cfg=dict(nms_pre=1000, iou_thr=.25, score_thr=.01)) |
|
|
|
dataset_type = 'MultiViewScanNetDataset' |
|
data_root = 'data/scannet/' |
|
class_names = [ |
|
'cabinet', 'bed', 'chair', 'sofa', 'table', 'door', 'window', 'bookshelf', |
|
'picture', 'counter', 'desk', 'curtain', 'refrigerator', 'showercurtrain', |
|
'toilet', 'sink', 'bathtub', 'garbagebin' |
|
] |
|
metainfo = dict(CLASSES=class_names) |
|
file_client_args = dict(backend='disk') |
|
|
|
input_modality = dict( |
|
use_camera=True, |
|
use_depth=True, |
|
use_lidar=False, |
|
use_neuralrecon_depth=False, |
|
use_ray=True) |
|
backend_args = None |
|
|
|
train_collect_keys = [ |
|
'img', 'gt_bboxes_3d', 'gt_labels_3d', 'depth', 'lightpos', 'nerf_sizes', |
|
'raydirs', 'gt_images', 'gt_depths', 'denorm_images' |
|
] |
|
|
|
test_collect_keys = [ |
|
'img', |
|
'depth', |
|
'lightpos', |
|
'nerf_sizes', |
|
'raydirs', |
|
'gt_images', |
|
'gt_depths', |
|
'denorm_images', |
|
] |
|
|
|
train_pipeline = [ |
|
dict(type='LoadAnnotations3D'), |
|
dict( |
|
type='MultiViewPipeline', |
|
n_images=48, |
|
transforms=[ |
|
dict(type='LoadImageFromFile', file_client_args=file_client_args), |
|
dict(type='Resize', scale=(320, 240), keep_ratio=True), |
|
], |
|
mean=[123.675, 116.28, 103.53], |
|
std=[58.395, 57.12, 57.375], |
|
margin=10, |
|
depth_range=[0.5, 5.5], |
|
loading='random', |
|
nerf_target_views=10), |
|
dict(type='RandomShiftOrigin', std=(.7, .7, .0)), |
|
dict(type='PackNeRFDetInputs', keys=train_collect_keys) |
|
] |
|
|
|
test_pipeline = [ |
|
dict(type='LoadAnnotations3D'), |
|
dict( |
|
type='MultiViewPipeline', |
|
n_images=101, |
|
transforms=[ |
|
dict(type='LoadImageFromFile', file_client_args=file_client_args), |
|
dict(type='Resize', scale=(320, 240), keep_ratio=True), |
|
], |
|
mean=[123.675, 116.28, 103.53], |
|
std=[58.395, 57.12, 57.375], |
|
margin=10, |
|
depth_range=[0.5, 5.5], |
|
loading='random', |
|
nerf_target_views=1), |
|
dict(type='PackNeRFDetInputs', keys=test_collect_keys) |
|
] |
|
|
|
train_dataloader = dict( |
|
batch_size=1, |
|
num_workers=1, |
|
persistent_workers=True, |
|
sampler=dict(type='DefaultSampler', shuffle=True), |
|
dataset=dict( |
|
type='RepeatDataset', |
|
times=6, |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='scannet_infos_train_new.pkl', |
|
pipeline=train_pipeline, |
|
modality=input_modality, |
|
test_mode=False, |
|
filter_empty_gt=True, |
|
box_type_3d='Depth', |
|
metainfo=metainfo))) |
|
val_dataloader = dict( |
|
batch_size=1, |
|
num_workers=5, |
|
persistent_workers=True, |
|
drop_last=False, |
|
sampler=dict(type='DefaultSampler', shuffle=False), |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='scannet_infos_val_new.pkl', |
|
pipeline=test_pipeline, |
|
modality=input_modality, |
|
test_mode=True, |
|
filter_empty_gt=True, |
|
box_type_3d='Depth', |
|
metainfo=metainfo)) |
|
test_dataloader = val_dataloader |
|
|
|
val_evaluator = dict(type='IndoorMetric') |
|
test_evaluator = val_evaluator |
|
|
|
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1) |
|
test_cfg = dict() |
|
val_cfg = dict() |
|
|
|
optim_wrapper = dict( |
|
type='OptimWrapper', |
|
optimizer=dict(type='AdamW', lr=0.0002, weight_decay=0.0001), |
|
paramwise_cfg=dict( |
|
custom_keys={'backbone': dict(lr_mult=0.1, decay_mult=1.0)}), |
|
clip_grad=dict(max_norm=35., norm_type=2)) |
|
param_scheduler = [ |
|
dict( |
|
type='MultiStepLR', |
|
begin=0, |
|
end=12, |
|
by_epoch=True, |
|
milestones=[8, 11], |
|
gamma=0.1) |
|
] |
|
|
|
|
|
default_hooks = dict( |
|
checkpoint=dict(type='CheckpointHook', interval=1, max_keep_ckpts=12)) |
|
|
|
|
|
find_unused_parameters = True |
|
|