giantmonkeyTC
2344
34d1f8b
import unittest
import torch
from mmengine import DefaultScope
from mmdet3d.registry import MODELS
from mmdet3d.testing import (create_detector_inputs, get_detector_cfg,
setup_seed)
class TestCenterPoint(unittest.TestCase):
def test_center_point(self):
import mmdet3d.models
assert hasattr(mmdet3d.models, 'CenterPoint')
setup_seed(0)
DefaultScope.get_instance('test_center_point', scope_name='mmdet3d')
centerpoint_net_cfg = get_detector_cfg(
'centerpoint/centerpoint_voxel01_second_secfpn_8xb4-cyclic-20e_nus-3d.py' # noqa
)
model = MODELS.build(centerpoint_net_cfg)
num_gt_instance = 50
packed_inputs = create_detector_inputs(
with_img=True, num_gt_instance=num_gt_instance, points_feat_dim=5)
for sample_id in range(len(packed_inputs['data_samples'])):
det_sample = packed_inputs['data_samples'][sample_id]
num_instances = len(det_sample.gt_instances_3d.bboxes_3d)
bbox_3d_class = det_sample.gt_instances_3d.bboxes_3d.__class__
det_sample.gt_instances_3d.bboxes_3d = bbox_3d_class(
torch.rand(num_instances, 9), box_dim=9)
if torch.cuda.is_available():
model = model.cuda()
# test simple_test
data = model.data_preprocessor(packed_inputs, True)
with torch.no_grad():
torch.cuda.empty_cache()
losses = model.forward(**data, mode='loss')
assert losses['task0.loss_heatmap'] >= 0
assert losses['task0.loss_bbox'] >= 0
assert losses['task1.loss_heatmap'] >= 0
assert losses['task1.loss_bbox'] >= 0
assert losses['task2.loss_heatmap'] >= 0
assert losses['task2.loss_bbox'] >= 0
assert losses['task3.loss_heatmap'] >= 0
assert losses['task3.loss_bbox'] >= 0
assert losses['task3.loss_bbox'] >= 0
assert losses['task4.loss_bbox'] >= 0
assert losses['task5.loss_heatmap'] >= 0
assert losses['task5.loss_bbox'] >= 0
with torch.no_grad():
results = model.forward(**data, mode='predict')
self.assertEqual(len(results), 1)
self.assertIn('bboxes_3d', results[0].pred_instances_3d)
self.assertIn('scores_3d', results[0].pred_instances_3d)
self.assertIn('labels_3d', results[0].pred_instances_3d)
# TODO test_aug_test