|
import unittest |
|
|
|
import torch |
|
from mmengine import DefaultScope |
|
|
|
from mmdet3d.registry import MODELS |
|
from mmdet3d.testing import (create_detector_inputs, get_detector_cfg, |
|
setup_seed) |
|
|
|
|
|
class TestCenterPoint(unittest.TestCase): |
|
|
|
def test_center_point(self): |
|
import mmdet3d.models |
|
|
|
assert hasattr(mmdet3d.models, 'CenterPoint') |
|
|
|
setup_seed(0) |
|
DefaultScope.get_instance('test_center_point', scope_name='mmdet3d') |
|
centerpoint_net_cfg = get_detector_cfg( |
|
'centerpoint/centerpoint_voxel01_second_secfpn_8xb4-cyclic-20e_nus-3d.py' |
|
) |
|
model = MODELS.build(centerpoint_net_cfg) |
|
num_gt_instance = 50 |
|
packed_inputs = create_detector_inputs( |
|
with_img=True, num_gt_instance=num_gt_instance, points_feat_dim=5) |
|
|
|
for sample_id in range(len(packed_inputs['data_samples'])): |
|
det_sample = packed_inputs['data_samples'][sample_id] |
|
num_instances = len(det_sample.gt_instances_3d.bboxes_3d) |
|
bbox_3d_class = det_sample.gt_instances_3d.bboxes_3d.__class__ |
|
det_sample.gt_instances_3d.bboxes_3d = bbox_3d_class( |
|
torch.rand(num_instances, 9), box_dim=9) |
|
|
|
if torch.cuda.is_available(): |
|
|
|
model = model.cuda() |
|
|
|
|
|
data = model.data_preprocessor(packed_inputs, True) |
|
with torch.no_grad(): |
|
torch.cuda.empty_cache() |
|
losses = model.forward(**data, mode='loss') |
|
assert losses['task0.loss_heatmap'] >= 0 |
|
assert losses['task0.loss_bbox'] >= 0 |
|
assert losses['task1.loss_heatmap'] >= 0 |
|
assert losses['task1.loss_bbox'] >= 0 |
|
assert losses['task2.loss_heatmap'] >= 0 |
|
assert losses['task2.loss_bbox'] >= 0 |
|
assert losses['task3.loss_heatmap'] >= 0 |
|
assert losses['task3.loss_bbox'] >= 0 |
|
assert losses['task3.loss_bbox'] >= 0 |
|
assert losses['task4.loss_bbox'] >= 0 |
|
assert losses['task5.loss_heatmap'] >= 0 |
|
assert losses['task5.loss_bbox'] >= 0 |
|
|
|
with torch.no_grad(): |
|
results = model.forward(**data, mode='predict') |
|
self.assertEqual(len(results), 1) |
|
self.assertIn('bboxes_3d', results[0].pred_instances_3d) |
|
self.assertIn('scores_3d', results[0].pred_instances_3d) |
|
self.assertIn('labels_3d', results[0].pred_instances_3d) |
|
|
|
|