|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- emotion |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: BERT-tiny-emotion-intent |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: emotion |
|
type: emotion |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.91 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# BERT-tiny-emotion-intent |
|
|
|
This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the emotion dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3620 |
|
- Accuracy: 0.91 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 33 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:--------:| |
|
| 1.2603 | 1.0 | 1000 | 0.7766 | 0.7815 | |
|
| 0.5919 | 2.0 | 2000 | 0.4117 | 0.884 | |
|
| 0.367 | 3.0 | 3000 | 0.3188 | 0.8995 | |
|
| 0.2848 | 4.0 | 4000 | 0.2928 | 0.8985 | |
|
| 0.2395 | 5.0 | 5000 | 0.2906 | 0.898 | |
|
| 0.2094 | 6.0 | 6000 | 0.2887 | 0.907 | |
|
| 0.1884 | 7.0 | 7000 | 0.2831 | 0.9065 | |
|
| 0.1603 | 8.0 | 8000 | 0.3044 | 0.9065 | |
|
| 0.1519 | 9.0 | 9000 | 0.3124 | 0.9095 | |
|
| 0.1291 | 10.0 | 10000 | 0.3256 | 0.9065 | |
|
| 0.1179 | 11.0 | 11000 | 0.3651 | 0.9035 | |
|
| 0.1091 | 12.0 | 12000 | 0.3620 | 0.91 | |
|
| 0.0977 | 13.0 | 13000 | 0.3992 | 0.907 | |
|
| 0.0914 | 14.0 | 14000 | 0.4285 | 0.908 | |
|
| 0.0876 | 15.0 | 15000 | 0.4268 | 0.9055 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.22.1 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.5.1 |
|
- Tokenizers 0.12.1 |
|
|