gokuls's picture
End of training
d1c6cc8
metadata
base_model: gokuls/HBERTv1_48_L12_H256_A4
tags:
  - generated_from_trainer
datasets:
  - massive
metrics:
  - accuracy
model-index:
  - name: HBERTv1_48_L12_H256_A4_massive
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: massive
          type: massive
          config: en-US
          split: validation
          args: en-US
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7338908017707821

HBERTv1_48_L12_H256_A4_massive

This model is a fine-tuned version of gokuls/HBERTv1_48_L12_H256_A4 on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1699
  • Accuracy: 0.7339

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.7238 1.0 180 3.4052 0.1382
3.1325 2.0 360 2.8875 0.2022
2.7162 3.0 540 2.5311 0.3030
2.4123 4.0 720 2.3315 0.3576
2.1258 5.0 900 2.0547 0.4186
1.8697 6.0 1080 1.8215 0.4889
1.6446 7.0 1260 1.6681 0.5421
1.4509 8.0 1440 1.5200 0.5853
1.2995 9.0 1620 1.4177 0.6188
1.1585 10.0 1800 1.3337 0.6557
1.0714 11.0 1980 1.2620 0.7059
0.9816 12.0 2160 1.2374 0.7147
0.9053 13.0 2340 1.1849 0.7290
0.8582 14.0 2520 1.1721 0.7324
0.8253 15.0 2700 1.1699 0.7339

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.0