Edit model card

HBERTv1_48_L12_H768_A12_massive_data_augmented

This model is a fine-tuned version of gokuls/HBERTv1_48_L12_H768_A12 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6902
  • Accuracy: 0.8377

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0914 1.0 4000 0.6902 0.8377
0.6178 2.0 8000 0.6890 0.8283
0.463 3.0 12000 0.7721 0.8254
0.3683 4.0 16000 0.7829 0.8288
0.3005 5.0 20000 0.8556 0.8303
0.2502 6.0 24000 0.9171 0.8214
0.2106 7.0 28000 1.0074 0.8160
0.1779 8.0 32000 1.0923 0.8239
0.1506 9.0 36000 1.1525 0.8254
0.1259 10.0 40000 1.2103 0.8249
0.1059 11.0 44000 1.3093 0.8269
0.0894 12.0 48000 1.4000 0.8288
0.0745 13.0 52000 1.5050 0.8313
0.0624 14.0 56000 1.5424 0.8288
0.0521 15.0 60000 1.5973 0.8308

Framework versions

  • Transformers 4.34.1
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gokuls/HBERTv1_48_L12_H768_A12_massive_data_augmented

Finetuned
(4)
this model