gokuls's picture
End of training
d4c1dc5
metadata
language:
  - en
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - spearmanr
model-index:
  - name: hBERTv1_new_pretrain_w_init_48_stsb
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE STSB
          type: glue
          config: stsb
          split: validation
          args: stsb
        metrics:
          - name: Spearmanr
            type: spearmanr
            value: 0.7471924680940966

hBERTv1_new_pretrain_w_init_48_stsb

This model is a fine-tuned version of gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48 on the GLUE STSB dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9800
  • Pearson: 0.7515
  • Spearmanr: 0.7472
  • Combined Score: 0.7493

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Pearson Spearmanr Combined Score
2.5456 1.0 45 2.2706 0.1246 0.1141 0.1194
2.0514 2.0 90 2.0613 0.5266 0.5198 0.5232
1.3837 3.0 135 1.1984 0.6853 0.6942 0.6897
1.0297 4.0 180 1.6176 0.6869 0.6961 0.6915
0.8064 5.0 225 1.1444 0.7476 0.7445 0.7460
0.604 6.0 270 1.2754 0.7422 0.7450 0.7436
0.4818 7.0 315 1.1407 0.7687 0.7673 0.7680
0.3905 8.0 360 1.1860 0.7560 0.7604 0.7582
0.3476 9.0 405 0.9800 0.7515 0.7472 0.7493
0.2819 10.0 450 1.0156 0.7521 0.7507 0.7514
0.2418 11.0 495 1.0174 0.7516 0.7480 0.7498
0.2068 12.0 540 1.2367 0.7530 0.7523 0.7527
0.1863 13.0 585 1.0073 0.7491 0.7468 0.7480
0.1929 14.0 630 1.0470 0.7517 0.7505 0.7511

Framework versions

  • Transformers 4.29.2
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.12.0
  • Tokenizers 0.13.3