gokuls's picture
End of training
46a9a0c
|
raw
history blame
2.31 kB
metadata
language:
  - en
base_model: gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
model-index:
  - name: hBERTv1_new_pretrain_w_init_48_ver2_mnli
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: GLUE MNLI
          type: glue
          config: mnli
          split: validation_matched
          args: mnli
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.459519934906428

hBERTv1_new_pretrain_w_init_48_ver2_mnli

This model is a fine-tuned version of gokuls/bert_12_layer_model_v1_complete_training_new_wt_init_48 on the GLUE MNLI dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0270
  • Accuracy: 0.4595

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 10
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.0624 1.0 6136 1.0715 0.3840
1.0497 2.0 12272 1.0548 0.4072
1.0421 3.0 18408 1.0476 0.4432
1.0485 4.0 24544 1.0547 0.4414
1.0473 5.0 30680 1.0516 0.4553
1.0498 6.0 36816 1.0556 0.4427
1.0531 7.0 42952 1.0556 0.4381
1.0609 8.0 49088 1.0687 0.4028

Framework versions

  • Transformers 4.34.0
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.14.5
  • Tokenizers 0.14.1