Edit model card

hbertv1-emotion-logit_KD-mini

This model is a fine-tuned version of gokuls/model_v1_complete_training_wt_init_48_mini_freeze_new on the emotion dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4302
  • Accuracy: 0.902

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0557 1.0 250 0.9294 0.8275
0.7977 2.0 500 0.5722 0.876
0.531 3.0 750 0.5091 0.8805
0.4472 4.0 1000 0.4683 0.8935
0.39 5.0 1250 0.4489 0.8975
0.3432 6.0 1500 0.4714 0.895
0.3148 7.0 1750 0.4302 0.902
0.2859 8.0 2000 0.4388 0.8955
0.2635 9.0 2250 0.4317 0.9
0.2409 10.0 2500 0.4433 0.901
0.2249 11.0 2750 0.4413 0.89
0.2159 12.0 3000 0.4607 0.897

Framework versions

  • Transformers 4.35.2
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
4
Safetensors
Model size
11.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gokuls/hbertv1-emotion-logit_KD-mini

Dataset used to train gokuls/hbertv1-emotion-logit_KD-mini

Evaluation results