Edit model card

hbertv1-massive-logit_KD-mini

This model is a fine-tuned version of gokuls/model_v1_complete_training_wt_init_48_mini_freeze_new on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4640
  • Accuracy: 0.8598

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.5547 1.0 180 2.3028 0.4481
1.9374 2.0 360 1.2686 0.6513
1.2845 3.0 540 0.9328 0.7324
0.9981 4.0 720 0.7684 0.7836
0.8273 5.0 900 0.6834 0.7998
0.7068 6.0 1080 0.6369 0.8062
0.6043 7.0 1260 0.5804 0.8205
0.535 8.0 1440 0.5475 0.8396
0.4763 9.0 1620 0.5247 0.8396
0.4245 10.0 1800 0.5122 0.8470
0.3794 11.0 1980 0.5038 0.8460
0.3424 12.0 2160 0.5057 0.8465
0.3194 13.0 2340 0.4977 0.8485
0.2897 14.0 2520 0.4973 0.8534
0.2688 15.0 2700 0.4714 0.8574
0.255 16.0 2880 0.4763 0.8480
0.2401 17.0 3060 0.4856 0.8510
0.2286 18.0 3240 0.4713 0.8578
0.2138 19.0 3420 0.4753 0.8500
0.2022 20.0 3600 0.4641 0.8544
0.1937 21.0 3780 0.4640 0.8598
0.1802 22.0 3960 0.4788 0.8505
0.1719 23.0 4140 0.4520 0.8593
0.17 24.0 4320 0.4703 0.8564
0.159 25.0 4500 0.4620 0.8554
0.1566 26.0 4680 0.4825 0.8549

Framework versions

  • Transformers 4.35.2
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
4
Safetensors
Model size
11.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gokuls/hbertv1-massive-logit_KD-mini

Evaluation results