Edit model card

hbertv1-massive-logit_KD-small

This model is a fine-tuned version of gokuls/model_v1_complete_training_wt_init_48_small_freeze_new on the massive dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4139
  • Accuracy: 0.8736

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 33
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2301 1.0 180 0.8611 0.7565
0.8039 2.0 360 0.5989 0.8151
0.5542 3.0 540 0.5036 0.8396
0.4134 4.0 720 0.4535 0.8569
0.3187 5.0 900 0.4432 0.8569
0.251 6.0 1080 0.4280 0.8637
0.2201 7.0 1260 0.4311 0.8598
0.1879 8.0 1440 0.4443 0.8608
0.168 9.0 1620 0.4136 0.8677
0.153 10.0 1800 0.4286 0.8598
0.137 11.0 1980 0.4148 0.8701
0.1276 12.0 2160 0.4158 0.8711
0.1196 13.0 2340 0.3975 0.8721
0.1137 14.0 2520 0.4221 0.8662
0.1066 15.0 2700 0.4085 0.8677
0.1024 16.0 2880 0.4048 0.8687
0.0995 17.0 3060 0.4139 0.8736
0.0949 18.0 3240 0.3953 0.8706
0.0908 19.0 3420 0.3984 0.8716
0.0882 20.0 3600 0.4006 0.8701
0.0864 21.0 3780 0.3943 0.8731
0.0837 22.0 3960 0.3912 0.8692

Framework versions

  • Transformers 4.35.2
  • Pytorch 1.14.0a0+410ce96
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
9
Safetensors
Model size
30.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gokuls/hbertv1-massive-logit_KD-small

Evaluation results