wav2vec2-base-960h-fsc

This model is a fine-tuned version of facebook/wav2vec2-base-960h on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0218
  • Accuracy: 0.9947

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 48
  • eval_batch_size: 48
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 192
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9959 120 0.3651 0.9380
No log 2.0 241 0.2352 0.9404
No log 2.9959 361 0.4245 0.8684
No log 4.0 482 0.0721 0.9837
No log 4.9959 602 0.0961 0.9768
No log 6.0 723 0.0632 0.9860
No log 6.9959 843 0.0498 0.9905
No log 8.0 964 0.0715 0.9834
0.4012 8.9959 1084 0.0907 0.9829
0.4012 10.0 1205 0.0644 0.9860
0.4012 10.9959 1325 0.0322 0.9921
0.4012 12.0 1446 0.0524 0.9881
0.4012 12.9959 1566 0.0450 0.9910
0.4012 14.0 1687 0.0227 0.9942
0.4012 14.9959 1807 0.0437 0.9908
0.4012 16.0 1928 0.0381 0.9924
0.1096 16.9959 2048 0.0218 0.9947
0.1096 18.0 2169 0.0300 0.9934
0.1096 18.9959 2289 0.0356 0.9931
0.1096 20.0 2410 0.0380 0.9937
0.1096 20.9959 2530 0.0417 0.9934
0.1096 22.0 2651 0.0268 0.9947

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1
Downloads last month
5
Safetensors
Model size
94.6M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for gokuls/wav2vec2-base-960h-fsc

Finetuned
(123)
this model