gogpt2-7b / README.md
quincyqiang's picture
Update README.md
75d55d8
|
raw
history blame
2.53 kB
metadata
license: apache-2.0
datasets:
  - BelleGroup/train_0.5M_CN
  - BelleGroup/train_1M_CN
  - c-s-ale/alpaca-gpt4-data-zh
  - BAAI/COIG
language:
  - zh
tags:
  - llama2
  - chinese-llama2
  - gogpt2-7b

GoGPT: 基于Llama2-7b训练的中英文增强大模型

Chinese LLaMA2 7B

GitHub GitHub top language

ICT中英文底座增强大模型:70亿参数、130亿参数

GoGPT-Github

step1:训练分词器

🐱怎么从零到一训练一个LLM分词器

├── data
│     └── corpus.txt 训练语料
├── llama
│     ├── tokenizer_checklist.chk
│     └── tokenizer.model
├── merged_tokenizer_hf 合并结果 hf格式
│     ├── special_tokens_map.json
│     ├── tokenizer_config.json
│     └── tokenizer.model
├── merged_tokenizer_sp
│     └── open_llama.model # 
├── merge_tokenizer
│     └── tokenizer.model
├── open_llama.model 训练的sp模型
├── open_llama.vocab 训练的sp词汇表
├── README.md
├── step0_step0_process_text.py 基于多分数据集准备训练语料
├── step1_make_corpus.py 基于中文Wikipedia数据准备训练语料
├── step2_train_tokenzier.py  训练分词器
├── step3_tokenzier_segment.py 测试训练后的模型,包括编码和解码测试样例
└── step4_merge_tokenizers.py 与原版llama的分词器进行合并,得到hf格式的tokenizer

step2:二次预训练

在中文预训练语料上对LLaMA进行增量预训练、继续预训练

step3: 有监督微调

  • belle数据:120k数据 v1
  • stanford_alapca:52k数据 v2
  • sharegpt:90k数据

免责声明

本项目相关资源仅供学术研究之用,严禁用于商业用途。 使用涉及第三方代码的部分时,请严格遵循相应的开源协议。

模型生成的内容受模型计算、随机性和量化精度损失等因素影响,本项目不对其准确性作出保证。

对于模型输出的任何内容,本项目不承担任何法律责任,亦不对因使用相关资源和输出结果而可能产生的任何损失承担责任。