lsy
#2
by
lazarsiyuan
- opened
- .gitattributes +0 -1
- README.md +0 -72
- model.safetensors +0 -3
- tokenizer_config.json +3 -1
.gitattributes
CHANGED
@@ -7,4 +7,3 @@
|
|
7 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
8 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
9 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
10 |
-
model.safetensors filter=lfs diff=lfs merge=lfs -text
|
|
|
7 |
*.ot filter=lfs diff=lfs merge=lfs -text
|
8 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
9 |
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
|
README.md
CHANGED
@@ -1,75 +1,3 @@
|
|
1 |
---
|
2 |
language: zh
|
3 |
---
|
4 |
-
|
5 |
-
# Bert-base-chinese
|
6 |
-
|
7 |
-
## Table of Contents
|
8 |
-
- [Model Details](#model-details)
|
9 |
-
- [Uses](#uses)
|
10 |
-
- [Risks, Limitations and Biases](#risks-limitations-and-biases)
|
11 |
-
- [Training](#training)
|
12 |
-
- [Evaluation](#evaluation)
|
13 |
-
- [How to Get Started With the Model](#how-to-get-started-with-the-model)
|
14 |
-
|
15 |
-
|
16 |
-
## Model Details
|
17 |
-
|
18 |
-
### Model Description
|
19 |
-
|
20 |
-
This model has been pre-trained for Chinese, training and random input masking has been applied independently to word pieces (as in the original BERT paper).
|
21 |
-
|
22 |
-
- **Developed by:** HuggingFace team
|
23 |
-
- **Model Type:** Fill-Mask
|
24 |
-
- **Language(s):** Chinese
|
25 |
-
- **License:** [More Information needed]
|
26 |
-
- **Parent Model:** See the [BERT base uncased model](https://huggingface.co/bert-base-uncased) for more information about the BERT base model.
|
27 |
-
|
28 |
-
### Model Sources
|
29 |
-
- **Paper:** [BERT](https://arxiv.org/abs/1810.04805)
|
30 |
-
|
31 |
-
## Uses
|
32 |
-
|
33 |
-
#### Direct Use
|
34 |
-
|
35 |
-
This model can be used for masked language modeling
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
## Risks, Limitations and Biases
|
40 |
-
**CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.**
|
41 |
-
|
42 |
-
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
|
43 |
-
|
44 |
-
|
45 |
-
## Training
|
46 |
-
|
47 |
-
#### Training Procedure
|
48 |
-
* **type_vocab_size:** 2
|
49 |
-
* **vocab_size:** 21128
|
50 |
-
* **num_hidden_layers:** 12
|
51 |
-
|
52 |
-
#### Training Data
|
53 |
-
[More Information Needed]
|
54 |
-
|
55 |
-
## Evaluation
|
56 |
-
|
57 |
-
#### Results
|
58 |
-
|
59 |
-
[More Information Needed]
|
60 |
-
|
61 |
-
|
62 |
-
## How to Get Started With the Model
|
63 |
-
```python
|
64 |
-
from transformers import AutoTokenizer, AutoModelForMaskedLM
|
65 |
-
|
66 |
-
tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")
|
67 |
-
|
68 |
-
model = AutoModelForMaskedLM.from_pretrained("bert-base-chinese")
|
69 |
-
|
70 |
-
```
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
1 |
---
|
2 |
language: zh
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model.safetensors
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:3404a1ffd8da507042e8161013ba2a4fc49858b4e3f8fbf5ce5724f94883aec3
|
3 |
-
size 411553788
|
|
|
|
|
|
|
|
tokenizer_config.json
CHANGED
@@ -1 +1,3 @@
|
|
1 |
-
{
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_lower_case": false
|
3 |
+
}
|