Files changed (4) hide show
  1. .gitattributes +0 -1
  2. README.md +0 -72
  3. model.safetensors +0 -3
  4. tokenizer_config.json +3 -1
.gitattributes CHANGED
@@ -7,4 +7,3 @@
7
  *.ot filter=lfs diff=lfs merge=lfs -text
8
  *.onnx filter=lfs diff=lfs merge=lfs -text
9
  *.msgpack filter=lfs diff=lfs merge=lfs -text
10
- model.safetensors filter=lfs diff=lfs merge=lfs -text
 
7
  *.ot filter=lfs diff=lfs merge=lfs -text
8
  *.onnx filter=lfs diff=lfs merge=lfs -text
9
  *.msgpack filter=lfs diff=lfs merge=lfs -text
 
README.md CHANGED
@@ -1,75 +1,3 @@
1
  ---
2
  language: zh
3
  ---
4
-
5
- # Bert-base-chinese
6
-
7
- ## Table of Contents
8
- - [Model Details](#model-details)
9
- - [Uses](#uses)
10
- - [Risks, Limitations and Biases](#risks-limitations-and-biases)
11
- - [Training](#training)
12
- - [Evaluation](#evaluation)
13
- - [How to Get Started With the Model](#how-to-get-started-with-the-model)
14
-
15
-
16
- ## Model Details
17
-
18
- ### Model Description
19
-
20
- This model has been pre-trained for Chinese, training and random input masking has been applied independently to word pieces (as in the original BERT paper).
21
-
22
- - **Developed by:** HuggingFace team
23
- - **Model Type:** Fill-Mask
24
- - **Language(s):** Chinese
25
- - **License:** [More Information needed]
26
- - **Parent Model:** See the [BERT base uncased model](https://huggingface.co/bert-base-uncased) for more information about the BERT base model.
27
-
28
- ### Model Sources
29
- - **Paper:** [BERT](https://arxiv.org/abs/1810.04805)
30
-
31
- ## Uses
32
-
33
- #### Direct Use
34
-
35
- This model can be used for masked language modeling
36
-
37
-
38
-
39
- ## Risks, Limitations and Biases
40
- **CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.**
41
-
42
- Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)).
43
-
44
-
45
- ## Training
46
-
47
- #### Training Procedure
48
- * **type_vocab_size:** 2
49
- * **vocab_size:** 21128
50
- * **num_hidden_layers:** 12
51
-
52
- #### Training Data
53
- [More Information Needed]
54
-
55
- ## Evaluation
56
-
57
- #### Results
58
-
59
- [More Information Needed]
60
-
61
-
62
- ## How to Get Started With the Model
63
- ```python
64
- from transformers import AutoTokenizer, AutoModelForMaskedLM
65
-
66
- tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese")
67
-
68
- model = AutoModelForMaskedLM.from_pretrained("bert-base-chinese")
69
-
70
- ```
71
-
72
-
73
-
74
-
75
-
 
1
  ---
2
  language: zh
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:3404a1ffd8da507042e8161013ba2a4fc49858b4e3f8fbf5ce5724f94883aec3
3
- size 411553788
 
 
 
 
tokenizer_config.json CHANGED
@@ -1 +1,3 @@
1
- {"do_lower_case": false, "model_max_length": 512}
 
 
 
1
+ {
2
+ "do_lower_case": false
3
+ }