|
--- |
|
library_name: transformers |
|
license: mit |
|
pipeline_tag: image-to-text |
|
--- |
|
|
|
# Blip Image Captioning Base BF16 |
|
|
|
This model is a quantized version of the [Salesforce/blip-image-captioning-base](https://huggingface.co/Salesforce/blip-image-captioning-base), an image-to-text model. |
|
From a memory footprint of 989 MBs -> 494 MBs by quantizing the percision of float32 to bfloat 16, reducing the model's memory size by 50 percent. |
|
|
|
## Example |
|
|
|
| <img src="https://huggingface.co/gospacedev/blip-image-captioning-base-bf16/resolve/main/cat%20in%20currents.png" width="316" height="316"> | |
|
|---| |
|
| a cat sitting on top of a purple and red striped carpet | |
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
```python |
|
from transformers import BlipForConditionalGeneration, BlipProcessor |
|
import requests |
|
from PIL import Image |
|
|
|
model = BlipForConditionalGeneration.from_pretrained("gospacedev/blip-image-captioning-base-bf16") |
|
processor = BlipProcessor.from_pretrained("gospacedev/blip-image-captioning-base-bf16") |
|
|
|
# Load sample image |
|
image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') |
|
|
|
# Generate output |
|
inputs = processor(image, return_tensors="pt") |
|
output = model.generate(**inputs) |
|
result = processor.decode(out[0], skip_special_tokens=True) |
|
|
|
print(results) |
|
``` |
|
|
|
## Model Details |
|
|
|
- **Developed by:** Grantley Cullar |
|
- **Model type:** Image-to-Text |
|
- **Language(s) (NLP):** English |
|
- **License:** MIT License |