|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: predict-perception-bertino-focus-victim |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# predict-perception-bertino-focus-victim |
|
|
|
This model is a fine-tuned version of [indigo-ai/BERTino](https://huggingface.co/indigo-ai/BERTino) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2497 |
|
- R2: 0.6131 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 20 |
|
- eval_batch_size: 8 |
|
- seed: 1996 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 47 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | R2 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:| |
|
| 0.5438 | 1.0 | 14 | 0.4405 | 0.3175 | |
|
| 0.2336 | 2.0 | 28 | 0.2070 | 0.6792 | |
|
| 0.0986 | 3.0 | 42 | 0.2868 | 0.5555 | |
|
| 0.0907 | 4.0 | 56 | 0.2916 | 0.5481 | |
|
| 0.0652 | 5.0 | 70 | 0.2187 | 0.6611 | |
|
| 0.0591 | 6.0 | 84 | 0.2320 | 0.6406 | |
|
| 0.0478 | 7.0 | 98 | 0.2501 | 0.6125 | |
|
| 0.0347 | 8.0 | 112 | 0.2425 | 0.6243 | |
|
| 0.021 | 9.0 | 126 | 0.2670 | 0.5863 | |
|
| 0.0214 | 10.0 | 140 | 0.2853 | 0.5580 | |
|
| 0.0172 | 11.0 | 154 | 0.2726 | 0.5776 | |
|
| 0.0177 | 12.0 | 168 | 0.2629 | 0.5927 | |
|
| 0.0152 | 13.0 | 182 | 0.2396 | 0.6287 | |
|
| 0.012 | 14.0 | 196 | 0.2574 | 0.6012 | |
|
| 0.0119 | 15.0 | 210 | 0.2396 | 0.6288 | |
|
| 0.0128 | 16.0 | 224 | 0.2517 | 0.6100 | |
|
| 0.0109 | 17.0 | 238 | 0.2509 | 0.6112 | |
|
| 0.008 | 18.0 | 252 | 0.2522 | 0.6092 | |
|
| 0.0101 | 19.0 | 266 | 0.2503 | 0.6121 | |
|
| 0.0075 | 20.0 | 280 | 0.2527 | 0.6084 | |
|
| 0.0082 | 21.0 | 294 | 0.2544 | 0.6058 | |
|
| 0.0061 | 22.0 | 308 | 0.2510 | 0.6111 | |
|
| 0.006 | 23.0 | 322 | 0.2402 | 0.6279 | |
|
| 0.005 | 24.0 | 336 | 0.2539 | 0.6066 | |
|
| 0.0058 | 25.0 | 350 | 0.2438 | 0.6222 | |
|
| 0.0051 | 26.0 | 364 | 0.2439 | 0.6221 | |
|
| 0.006 | 27.0 | 378 | 0.2442 | 0.6216 | |
|
| 0.0061 | 28.0 | 392 | 0.2416 | 0.6257 | |
|
| 0.0053 | 29.0 | 406 | 0.2519 | 0.6097 | |
|
| 0.0045 | 30.0 | 420 | 0.2526 | 0.6085 | |
|
| 0.0034 | 31.0 | 434 | 0.2578 | 0.6006 | |
|
| 0.0039 | 32.0 | 448 | 0.2557 | 0.6038 | |
|
| 0.0043 | 33.0 | 462 | 0.2538 | 0.6068 | |
|
| 0.0041 | 34.0 | 476 | 0.2535 | 0.6072 | |
|
| 0.0042 | 35.0 | 490 | 0.2560 | 0.6033 | |
|
| 0.0037 | 36.0 | 504 | 0.2576 | 0.6009 | |
|
| 0.0036 | 37.0 | 518 | 0.2634 | 0.5919 | |
|
| 0.0037 | 38.0 | 532 | 0.2582 | 0.5999 | |
|
| 0.0038 | 39.0 | 546 | 0.2552 | 0.6045 | |
|
| 0.0034 | 40.0 | 560 | 0.2563 | 0.6028 | |
|
| 0.0033 | 41.0 | 574 | 0.2510 | 0.6110 | |
|
| 0.0029 | 42.0 | 588 | 0.2515 | 0.6103 | |
|
| 0.0033 | 43.0 | 602 | 0.2525 | 0.6088 | |
|
| 0.0028 | 44.0 | 616 | 0.2522 | 0.6093 | |
|
| 0.0028 | 45.0 | 630 | 0.2526 | 0.6085 | |
|
| 0.0027 | 46.0 | 644 | 0.2494 | 0.6136 | |
|
| 0.0024 | 47.0 | 658 | 0.2497 | 0.6131 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.16.2 |
|
- Pytorch 1.10.2+cu113 |
|
- Datasets 1.18.3 |
|
- Tokenizers 0.11.0 |
|
|