|
--- |
|
library_name: transformers |
|
license: cc-by-nc-sa-4.0 |
|
base_model: microsoft/layoutlmv2-base-uncased |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: layoutlmv2-base-uncased_finetuned_docvqa |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# layoutlmv2-base-uncased_finetuned_docvqa |
|
|
|
This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 5.5645 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-------:|:----:|:---------------:| |
|
| 5.3224 | 0.2212 | 50 | 4.5586 | |
|
| 4.5246 | 0.4425 | 100 | 4.1173 | |
|
| 4.1619 | 0.6637 | 150 | 3.8601 | |
|
| 3.7534 | 0.8850 | 200 | 3.6319 | |
|
| 3.6105 | 1.1062 | 250 | 3.7778 | |
|
| 3.3319 | 1.3274 | 300 | 3.1775 | |
|
| 3.0645 | 1.5487 | 350 | 2.8592 | |
|
| 2.8209 | 1.7699 | 400 | 2.7744 | |
|
| 2.7174 | 1.9912 | 450 | 2.7408 | |
|
| 2.0437 | 2.2124 | 500 | 2.7848 | |
|
| 2.0063 | 2.4336 | 550 | 2.9319 | |
|
| 1.9314 | 2.6549 | 600 | 2.3084 | |
|
| 1.7939 | 2.8761 | 650 | 2.4124 | |
|
| 1.7613 | 3.0973 | 700 | 2.5776 | |
|
| 1.3099 | 3.3186 | 750 | 2.2375 | |
|
| 1.4457 | 3.5398 | 800 | 2.7229 | |
|
| 1.4964 | 3.7611 | 850 | 2.5109 | |
|
| 1.428 | 3.9823 | 900 | 2.4552 | |
|
| 0.9892 | 4.2035 | 950 | 3.2111 | |
|
| 1.0568 | 4.4248 | 1000 | 2.3875 | |
|
| 0.8754 | 4.6460 | 1050 | 2.8059 | |
|
| 0.8201 | 4.8673 | 1100 | 2.5949 | |
|
| 1.0239 | 5.0885 | 1150 | 2.8688 | |
|
| 0.7348 | 5.3097 | 1200 | 2.8210 | |
|
| 0.7866 | 5.5310 | 1250 | 2.4231 | |
|
| 0.5954 | 5.7522 | 1300 | 2.8619 | |
|
| 0.7299 | 5.9735 | 1350 | 2.8536 | |
|
| 0.5132 | 6.1947 | 1400 | 2.6224 | |
|
| 0.7035 | 6.4159 | 1450 | 3.2108 | |
|
| 0.5626 | 6.6372 | 1500 | 2.8695 | |
|
| 0.431 | 6.8584 | 1550 | 3.3508 | |
|
| 0.4354 | 7.0796 | 1600 | 3.4196 | |
|
| 0.3896 | 7.3009 | 1650 | 3.1219 | |
|
| 0.4899 | 7.5221 | 1700 | 3.0649 | |
|
| 0.5703 | 7.7434 | 1750 | 3.0621 | |
|
| 0.435 | 7.9646 | 1800 | 3.3686 | |
|
| 0.3251 | 8.1858 | 1850 | 3.2093 | |
|
| 0.2464 | 8.4071 | 1900 | 3.9491 | |
|
| 0.4524 | 8.6283 | 1950 | 3.4324 | |
|
| 0.5715 | 8.8496 | 2000 | 3.5811 | |
|
| 0.3552 | 9.0708 | 2050 | 3.9434 | |
|
| 0.1147 | 9.2920 | 2100 | 4.5776 | |
|
| 0.2613 | 9.5133 | 2150 | 4.0439 | |
|
| 0.5679 | 9.7345 | 2200 | 3.4187 | |
|
| 0.3372 | 9.9558 | 2250 | 3.3868 | |
|
| 0.3143 | 10.1770 | 2300 | 4.2051 | |
|
| 0.1989 | 10.3982 | 2350 | 3.7925 | |
|
| 0.1859 | 10.6195 | 2400 | 4.1932 | |
|
| 0.3882 | 10.8407 | 2450 | 4.1672 | |
|
| 0.1824 | 11.0619 | 2500 | 4.3516 | |
|
| 0.106 | 11.2832 | 2550 | 4.5112 | |
|
| 0.2096 | 11.5044 | 2600 | 4.3784 | |
|
| 0.1035 | 11.7257 | 2650 | 4.3866 | |
|
| 0.2113 | 11.9469 | 2700 | 4.1279 | |
|
| 0.2263 | 12.1681 | 2750 | 4.2749 | |
|
| 0.1014 | 12.3894 | 2800 | 4.5176 | |
|
| 0.1555 | 12.6106 | 2850 | 3.9479 | |
|
| 0.1732 | 12.8319 | 2900 | 4.2414 | |
|
| 0.1484 | 13.0531 | 2950 | 4.0296 | |
|
| 0.1051 | 13.2743 | 3000 | 4.5086 | |
|
| 0.1282 | 13.4956 | 3050 | 4.6194 | |
|
| 0.1471 | 13.7168 | 3100 | 4.6707 | |
|
| 0.1888 | 13.9381 | 3150 | 4.3906 | |
|
| 0.0723 | 14.1593 | 3200 | 4.9790 | |
|
| 0.0302 | 14.3805 | 3250 | 5.0363 | |
|
| 0.1599 | 14.6018 | 3300 | 4.8371 | |
|
| 0.1179 | 14.8230 | 3350 | 4.3327 | |
|
| 0.1128 | 15.0442 | 3400 | 5.0618 | |
|
| 0.0493 | 15.2655 | 3450 | 5.2469 | |
|
| 0.0341 | 15.4867 | 3500 | 5.3640 | |
|
| 0.0545 | 15.7080 | 3550 | 5.0736 | |
|
| 0.0883 | 15.9292 | 3600 | 5.1372 | |
|
| 0.0461 | 16.1504 | 3650 | 5.0354 | |
|
| 0.0244 | 16.3717 | 3700 | 5.4353 | |
|
| 0.0541 | 16.5929 | 3750 | 5.3114 | |
|
| 0.0164 | 16.8142 | 3800 | 5.4107 | |
|
| 0.0336 | 17.0354 | 3850 | 5.4258 | |
|
| 0.0483 | 17.2566 | 3900 | 5.3555 | |
|
| 0.0994 | 17.4779 | 3950 | 5.2090 | |
|
| 0.0351 | 17.6991 | 4000 | 5.3768 | |
|
| 0.0065 | 17.9204 | 4050 | 5.5076 | |
|
| 0.0053 | 18.1416 | 4100 | 5.4823 | |
|
| 0.0043 | 18.3628 | 4150 | 5.4850 | |
|
| 0.0452 | 18.5841 | 4200 | 5.4849 | |
|
| 0.0086 | 18.8053 | 4250 | 5.5881 | |
|
| 0.0322 | 19.0265 | 4300 | 5.5167 | |
|
| 0.0135 | 19.2478 | 4350 | 5.5502 | |
|
| 0.0229 | 19.4690 | 4400 | 5.5385 | |
|
| 0.042 | 19.6903 | 4450 | 5.5602 | |
|
| 0.0404 | 19.9115 | 4500 | 5.5645 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.5.0+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.19.1 |
|
|