File size: 7,838 Bytes
f670364 ba2bf8b f670364 ba2bf8b f670364 6f2e180 cb48697 f670364 6f2e180 f670364 6f2e180 f670364 6f2e180 f670364 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_8_0
metrics:
- wer
model-index:
- name: wav2vec2-large-xls-r-1b-frisian-cv-8-large-train
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_8_0
type: common_voice_8_0
config: fy-NL
split: validation
args: fy-NL
metrics:
- name: Wer
type: wer
value: 0.04206541922582488
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_8_0
type: common_voice_8_0
config: fy-NL
split: test
args: fy-NL
metrics:
- name: Wer
type: wer
value: 0.04108252637664402
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-1b-frisian-cv-8-large-train
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice_8_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0444
- Wer: 0.0421
And on the test set:
- Wer: 0.0411
## Model description
This model has been developed for my Master's thesis in "Voice Technology" at Rijksuniversiteit Groningen - Campus Fryslân. It corresponds to experiment 2 where
I use as training set all validated data (~ 50 hours) except the test and evaluation sets (~ 4.5 hours each). The number of training hours adds up to 41 hours of Frisian speech.
## Intended uses & limitations
The intended use is for recognizing Frisian speech.
Limitations include no LM rescoring and using version 8.0 of Common Voice instead of 13.0.
## Training and evaluation data
The evaluation split used is the one available in the Common Voice 8.0 Frisian subset. The train split corresponds to all of the validated data except for the recordings found in the evaluation and test splits.
## Training procedure
The script used for training this model can be found in this GitHub repository: [link](https://github.com/greenw0lf/MSc-VT-Thesis/).
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 36
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 7.2522 | 0.48 | 400 | 3.1028 | 1.0 |
| 3.0052 | 0.97 | 800 | 2.9334 | 1.0 |
| 2.0865 | 1.45 | 1200 | 0.7288 | 0.6646 |
| 1.1654 | 1.93 | 1600 | 0.4298 | 0.4196 |
| 0.9665 | 2.41 | 2000 | 0.3134 | 0.3162 |
| 0.7891 | 2.9 | 2400 | 0.2378 | 0.2587 |
| 0.8366 | 3.38 | 2800 | 0.1896 | 0.2016 |
| 0.8606 | 3.86 | 3200 | 0.1647 | 0.1903 |
| 0.7536 | 4.34 | 3600 | 0.1486 | 0.1573 |
| 0.632 | 4.83 | 4000 | 0.1341 | 0.1450 |
| 0.5198 | 5.31 | 4400 | 0.1223 | 0.1415 |
| 0.4998 | 5.79 | 4800 | 0.1155 | 0.1388 |
| 0.4273 | 6.27 | 5200 | 0.1132 | 0.1302 |
| 0.3982 | 6.76 | 5600 | 0.1036 | 0.1102 |
| 0.3964 | 7.24 | 6000 | 0.0988 | 0.1209 |
| 0.3848 | 7.72 | 6400 | 0.0995 | 0.0985 |
| 0.3702 | 8.2 | 6800 | 0.0969 | 0.0945 |
| 0.3612 | 8.69 | 7200 | 0.0899 | 0.0967 |
| 0.3518 | 9.17 | 7600 | 0.0856 | 0.1061 |
| 0.3371 | 9.65 | 8000 | 0.0902 | 0.0875 |
| 0.3295 | 10.13 | 8400 | 0.0819 | 0.0914 |
| 0.3157 | 10.62 | 8800 | 0.0785 | 0.0937 |
| 0.3025 | 11.1 | 9200 | 0.0782 | 0.0804 |
| 0.3092 | 11.58 | 9600 | 0.0758 | 0.0845 |
| 0.301 | 12.06 | 10000 | 0.0775 | 0.0847 |
| 0.3016 | 12.55 | 10400 | 0.0730 | 0.0776 |
| 0.2892 | 13.03 | 10800 | 0.0719 | 0.0735 |
| 0.283 | 13.51 | 11200 | 0.0728 | 0.0727 |
| 0.2806 | 13.99 | 11600 | 0.0694 | 0.0710 |
| 0.2639 | 14.48 | 12000 | 0.0705 | 0.0703 |
| 0.2606 | 14.96 | 12400 | 0.0652 | 0.0668 |
| 0.2595 | 15.44 | 12800 | 0.0638 | 0.0691 |
| 0.2611 | 15.92 | 13200 | 0.0636 | 0.0713 |
| 0.246 | 16.41 | 13600 | 0.0632 | 0.0653 |
| 0.2544 | 16.89 | 14000 | 0.0605 | 0.0638 |
| 0.2509 | 17.37 | 14400 | 0.0640 | 0.0646 |
| 0.2381 | 17.85 | 14800 | 0.0604 | 0.0663 |
| 0.2336 | 18.34 | 15200 | 0.0590 | 0.0628 |
| 0.2285 | 18.82 | 15600 | 0.0580 | 0.0612 |
| 0.2362 | 19.3 | 16000 | 0.0655 | 0.0638 |
| 0.2279 | 19.78 | 16400 | 0.0611 | 0.0669 |
| 0.2228 | 20.27 | 16800 | 0.0606 | 0.0621 |
| 0.2242 | 20.75 | 17200 | 0.0560 | 0.0575 |
| 0.2053 | 21.23 | 17600 | 0.0571 | 0.0572 |
| 0.2097 | 21.71 | 18000 | 0.0557 | 0.0555 |
| 0.2072 | 22.2 | 18400 | 0.0563 | 0.0576 |
| 0.2076 | 22.68 | 18800 | 0.0532 | 0.0562 |
| 0.2026 | 23.16 | 19200 | 0.0531 | 0.0540 |
| 0.1941 | 23.64 | 19600 | 0.0535 | 0.0534 |
| 0.1983 | 24.13 | 20000 | 0.0528 | 0.0541 |
| 0.2075 | 24.61 | 20400 | 0.0536 | 0.0538 |
| 0.1937 | 25.09 | 20800 | 0.0532 | 0.0569 |
| 0.1943 | 25.57 | 21200 | 0.0511 | 0.0507 |
| 0.1844 | 26.06 | 21600 | 0.0521 | 0.0521 |
| 0.181 | 26.54 | 22000 | 0.0506 | 0.0507 |
| 0.1877 | 27.02 | 22400 | 0.0529 | 0.0510 |
| 0.1825 | 27.5 | 22800 | 0.0527 | 0.0498 |
| 0.1872 | 27.99 | 23200 | 0.0506 | 0.0485 |
| 0.1857 | 28.47 | 23600 | 0.0497 | 0.0492 |
| 0.1766 | 28.95 | 24000 | 0.0504 | 0.0488 |
| 0.1756 | 29.43 | 24400 | 0.0496 | 0.0482 |
| 0.1701 | 29.92 | 24800 | 0.0479 | 0.0479 |
| 0.1717 | 30.4 | 25200 | 0.0499 | 0.0468 |
| 0.1624 | 30.88 | 25600 | 0.0492 | 0.0466 |
| 0.1671 | 31.36 | 26000 | 0.0490 | 0.0461 |
| 0.1704 | 31.85 | 26400 | 0.0482 | 0.0452 |
| 0.1653 | 32.33 | 26800 | 0.0467 | 0.0446 |
| 0.158 | 32.81 | 27200 | 0.0465 | 0.0449 |
| 0.1599 | 33.29 | 27600 | 0.0473 | 0.0445 |
| 0.1558 | 33.78 | 28000 | 0.0475 | 0.0453 |
| 0.1556 | 34.26 | 28400 | 0.0462 | 0.0445 |
| 0.1591 | 34.74 | 28800 | 0.0464 | 0.0431 |
| 0.1544 | 35.22 | 29200 | 0.0476 | 0.0433 |
| 0.1576 | 35.71 | 29600 | 0.0466 | 0.0434 |
| 0.1507 | 36.19 | 30000 | 0.0451 | 0.0435 |
| 0.1501 | 36.67 | 30400 | 0.0453 | 0.0429 |
| 0.1482 | 37.15 | 30800 | 0.0439 | 0.0432 |
| 0.1518 | 37.64 | 31200 | 0.0446 | 0.0424 |
| 0.1454 | 38.12 | 31600 | 0.0449 | 0.0417 |
| 0.145 | 38.6 | 32000 | 0.0440 | 0.0421 |
| 0.147 | 39.08 | 32400 | 0.0441 | 0.0424 |
| 0.141 | 39.57 | 32800 | 0.0444 | 0.0421 |
### Framework versions
- Transformers 4.28.1
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.13.3
|