Edit model card

SloBertAA_Top5_WithoutOOC_082023

This model is a fine-tuned version of EMBEDDIA/sloberta on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4398
  • Accuracy: 0.9478
  • F1: 0.9478
  • Precision: 0.9481
  • Recall: 0.9478

Other related models

Models fine-tuned on the RTV datasets:

Base model Includes the OOC class? 5 classes 10 classes 20 classes 50 classes 100 classes
SloBERTa Yes link link link link link
SloBERTa No link link link link link
BERT Multilingual Yes link link link link link
BERT Multilingual No link link link link link

Models fine-tuned on the IMDb datasets:

Base model Includes the OOC class? 5 classes 10 classes 25 classes 50 classes 100 classes
BERT Multilingual No link link link link link

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.2468 1.0 8757 0.2629 0.9194 0.9199 0.9226 0.9194
0.1864 2.0 17514 0.2340 0.9375 0.9377 0.9386 0.9375
0.1419 3.0 26271 0.2821 0.9371 0.9374 0.9389 0.9371
0.1001 4.0 35028 0.3135 0.9408 0.9409 0.9412 0.9408
0.0727 5.0 43785 0.3584 0.9415 0.9416 0.9423 0.9415
0.057 6.0 52542 0.3552 0.9440 0.9442 0.9450 0.9440
0.0332 7.0 61299 0.4318 0.9394 0.9396 0.9407 0.9394
0.0268 8.0 70056 0.4376 0.9442 0.9444 0.9455 0.9442
0.019 9.0 78813 0.4377 0.9444 0.9445 0.9451 0.9444
0.0181 10.0 87570 0.4398 0.9478 0.9478 0.9481 0.9478

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.8.0
  • Datasets 2.10.1
  • Tokenizers 0.13.2
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.