|
Gretel's baseline text2table was fine-tuned on togethercomputer's RedPajama-INCITE-instruct-3B-v1 model for 100 epochs on 8A100 80GB gpu's. The fine-tuning used ~2k training samples (text and table pairs) that were generated using OpenAI. |
|
|
|
## Data Formatting |
|
|
|
```python |
|
INSTRUCTION_KEY = "### Instruction: Given the following prompt, generate a table" |
|
RESPONSE_KEY = "### Response:" |
|
INTRO_BLURB = "Below is an instruction that describes a task. Write a response that appropriately completes the request." |
|
PROMPT_FOR_GENERATION_FORMAT = """{intro} |
|
{instruction_key} |
|
{prompt_to_generate_table} |
|
{response_key} |
|
{table} |
|
""".format( |
|
intro=INTRO_BLURB, |
|
instruction_key=INSTRUCTION_KEY, |
|
prompt_to_generate_table"{PROMPT}", |
|
response_key=RESPONSE_KEY, |
|
table="{TABLE}" |
|
) |
|
``` |
|
|
|
## For generation purposes: |
|
|
|
```python |
|
import torch |
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained('togethercomputer/RedPajama-INCITE-Instruct-3B-v1', padding_side="right") |
|
model = AutoModelForCausalLM.from_pretrained('gretelai/text2table').to('cuda') |
|
|
|
model.eval() |
|
|
|
INSTRUCTION_KEY = "### Instruction: Given the following prompt, generate a table." |
|
RESPONSE_KEY = "### Response:" |
|
INTRO_BLURB = "Below is an instruction that describes a task. Write a response that appropriately completes the request." |
|
PROMPT_FOR_GENERATION_FORMAT = """{intro} |
|
{instruction_key} |
|
{prompt_to_generate_table} |
|
{response_key} |
|
""".format( |
|
intro=INTRO_BLURB, |
|
instruction_key=INSTRUCTION_KEY, |
|
prompt_to_generate_table="{prompt_to_generate_table}", |
|
response_key=RESPONSE_KEY, |
|
) |
|
|
|
PROMPT = "Create a dataset with four columns: patient, sex, agegrp, bp_before and bp_after. The patient column is a numerical identifier, sex is the gender of the patient, agegrp is the age group of the patient, bp_before is the blood pressure (in mmHg) before a certain treatment, and bp_after is the blood pressure (in mmHg) after a certain treatment." |
|
inputs = PROMPT_FOR_GENERATION_FORMAT.format(prompt_to_generate_table=PROMPT) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
input = tokenizer(inputs, return_tensors="pt").to('cuda') |
|
input_ids = input['input_ids'] |
|
outputs = model.generate(**input, max_length = 1024) |
|
table = tokenizer.decode(outputs[0], skip_special_tokens=False) |
|
``` |
|
|
|
## Output |
|
|
|
```python |
|
PROMPT = "Create a dataset with four columns: patient, sex, agegrp, bp_before and bp_after. The patient column is a numerical identifier, sex is the gender of the patient, agegrp is the age group of the patient, bp_before is the blood pressure (in mmHg) before a certain treatment, and bp_after is the blood pressure (in mmHg) after a certain treatment." |
|
|
|
MODEL GENERATION -> |
|
|
|
Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
Instruction: Given the following prompt, generate a table. Each column should have random values. |
|
Create a dataset with four columns: patient, sex, agegrp, bp_before and bp_after. The patient column is a numerical identifier, sex is the gender of the patient, agegrp is the age group of the patient, bp_before is the blood pressure (in mmHg) before a certain treatment, and bp_after is the blood pressure (in mmHg) after a certain treatment. |
|
Response: |
|
patient,sex,agegrp,bp_before,bp_after |
|
1.0,F,45.0,183.0,124.0,234.0 |
|
2.0,F,60.0,183.0,124.0,183.0 |
|
3.0,F,70.0,179.0,117.0,183.0 |
|
4.0,M,30.0,141.0,136.0,161.0 |
|
5.0,M,70.0,147.0,129.0,157.0 |
|
6.0,M,40.0,140.0,136.0,156.0 |
|
7.0,M,60.0,140.0,116.0,157.0 |
|
8.0,M,70.0,144.0,131.0,161.0 |
|
9.0,M,60.0,142.0,119.0,157.0 |
|
10.0,M,70.0,147.0,132.0,167.0 |
|
11.0,M,60.0,147.0,136.0,166.0 |
|
12.0,M,70.0,150.0,132.0,172.0 |
|
13.0,M,60.0,149.0,137.0,162.0 |
|
14.0,M,70.0,156.0,124.0,157.0 |
|
15.0,M,60.0,156.0,181.0,157.0 |
|
16.0,M,70.0,156.0,131.0,158.0 |
|
``` |