metadata
library_name: transformers
license: apache-2.0
base_model: facebook/dinov2-large
tags:
- generated_from_trainer
model-index:
- name: Ziboiai-large-2024_10_31-prova_batch-size32_freeze_probs
results: []
Ziboiai-large-2024_10_31-prova_batch-size32_freeze_probs
This model is a fine-tuned version of facebook/dinov2-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6333
- Rmse: 0.3468
- Mae: 0.3060
- R2: -1.9752
- Explained Variance: 0.1029
- Learning Rate: 0.0000
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 150
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rmse | Mae | R2 | Explained Variance | Rate |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 2 | 0.7005 | 0.3966 | 0.3705 | -21.5069 | 0.0684 | 0.001 |
No log | 2.0 | 4 | 0.7249 | 0.4021 | 0.3746 | -26.3836 | 0.0822 | 0.001 |
No log | 3.0 | 6 | 0.7532 | 0.4114 | 0.3816 | -29.6868 | 0.1178 | 0.001 |
No log | 4.0 | 8 | 0.7681 | 0.4186 | 0.3850 | -29.0398 | 0.0566 | 0.001 |
No log | 5.0 | 10 | 0.7665 | 0.4178 | 0.3827 | -26.6101 | 0.0116 | 0.001 |
No log | 6.0 | 12 | 0.7594 | 0.4152 | 0.3779 | -24.2590 | -0.0414 | 0.001 |
No log | 7.0 | 14 | 0.7494 | 0.4108 | 0.3715 | -22.3016 | -0.1878 | 0.001 |
No log | 8.0 | 16 | 0.7214 | 0.3992 | 0.3610 | -20.1630 | -0.1876 | 0.0001 |
No log | 9.0 | 18 | 0.7013 | 0.3905 | 0.3530 | -18.6708 | -0.1643 | 0.0001 |
No log | 10.0 | 20 | 0.6869 | 0.3836 | 0.3467 | -17.4192 | -0.1505 | 0.0001 |
No log | 11.0 | 22 | 0.6764 | 0.3787 | 0.3425 | -16.5076 | -0.1282 | 0.0001 |
No log | 12.0 | 24 | 0.6669 | 0.3740 | 0.3384 | -16.0072 | -0.1085 | 0.0001 |
No log | 13.0 | 26 | 0.6617 | 0.3712 | 0.3358 | -15.5612 | -0.0882 | 0.0001 |
No log | 14.0 | 28 | 0.6557 | 0.3683 | 0.3332 | -14.8471 | -0.0399 | 0.0001 |
No log | 15.0 | 30 | 0.6517 | 0.3661 | 0.3313 | -14.3744 | -0.0149 | 0.0001 |
No log | 16.0 | 32 | 0.6494 | 0.3650 | 0.3302 | -14.0923 | 0.0009 | 0.0001 |
No log | 17.0 | 34 | 0.6469 | 0.3634 | 0.3284 | -14.0430 | 0.0076 | 0.0001 |
No log | 18.0 | 36 | 0.6455 | 0.3626 | 0.3275 | -13.8481 | 0.0275 | 0.0001 |
No log | 19.0 | 38 | 0.6437 | 0.3617 | 0.3270 | -13.7294 | 0.0458 | 0.0001 |
No log | 20.0 | 40 | 0.6426 | 0.3611 | 0.3265 | -13.4695 | 0.0571 | 0.0001 |
No log | 21.0 | 42 | 0.6414 | 0.3605 | 0.3256 | -13.4449 | 0.0581 | 0.0001 |
No log | 22.0 | 44 | 0.6422 | 0.3605 | 0.3257 | -13.3180 | 0.0542 | 0.0001 |
No log | 23.0 | 46 | 0.6407 | 0.3593 | 0.3246 | -13.2487 | 0.0755 | 0.0001 |
No log | 24.0 | 48 | 0.6375 | 0.3576 | 0.3230 | -13.2495 | 0.0741 | 0.0001 |
No log | 25.0 | 50 | 0.6332 | 0.3551 | 0.3205 | -12.9650 | 0.0843 | 0.0001 |
No log | 26.0 | 52 | 0.6316 | 0.3540 | 0.3191 | -12.7124 | 0.0903 | 0.0001 |
No log | 27.0 | 54 | 0.6298 | 0.3527 | 0.3176 | -12.5315 | 0.0972 | 0.0001 |
No log | 28.0 | 56 | 0.6287 | 0.3519 | 0.3168 | -12.3934 | 0.1010 | 0.0001 |
No log | 29.0 | 58 | 0.6279 | 0.3514 | 0.3163 | -12.3234 | 0.1064 | 0.0001 |
No log | 30.0 | 60 | 0.6246 | 0.3494 | 0.3141 | -12.2314 | 0.1160 | 0.0001 |
No log | 31.0 | 62 | 0.6211 | 0.3475 | 0.3123 | -12.0643 | 0.1264 | 0.0001 |
No log | 32.0 | 64 | 0.6218 | 0.3477 | 0.3125 | -11.9670 | 0.1294 | 0.0001 |
No log | 33.0 | 66 | 0.6202 | 0.3470 | 0.3120 | -11.7550 | 0.1365 | 0.0001 |
No log | 34.0 | 68 | 0.6191 | 0.3463 | 0.3111 | -11.6145 | 0.1364 | 0.0001 |
No log | 35.0 | 70 | 0.6174 | 0.3455 | 0.3105 | -11.5861 | 0.1400 | 0.0001 |
No log | 36.0 | 72 | 0.6195 | 0.3462 | 0.3109 | -11.7605 | 0.1398 | 0.0001 |
No log | 37.0 | 74 | 0.6210 | 0.3470 | 0.3114 | -11.7035 | 0.1367 | 0.0001 |
No log | 38.0 | 76 | 0.6201 | 0.3463 | 0.3107 | -11.6608 | 0.1387 | 0.0001 |
No log | 39.0 | 78 | 0.6195 | 0.3461 | 0.3106 | -11.6294 | 0.1362 | 0.0001 |
No log | 40.0 | 80 | 0.6195 | 0.3459 | 0.3101 | -11.6709 | 0.1279 | 0.0001 |
No log | 41.0 | 82 | 0.6196 | 0.3456 | 0.3095 | -11.4656 | 0.1154 | 0.0001 |
No log | 42.0 | 84 | 0.6185 | 0.3453 | 0.3096 | -11.4190 | 0.1220 | 1e-05 |
No log | 43.0 | 86 | 0.6196 | 0.3457 | 0.3099 | -11.4211 | 0.1224 | 1e-05 |
No log | 44.0 | 88 | 0.6175 | 0.3448 | 0.3091 | -11.3422 | 0.1252 | 1e-05 |
No log | 45.0 | 90 | 0.6148 | 0.3435 | 0.3079 | -11.2377 | 0.1267 | 1e-05 |
No log | 46.0 | 92 | 0.6156 | 0.3439 | 0.3081 | -11.2161 | 0.1232 | 1e-05 |
No log | 47.0 | 94 | 0.6162 | 0.3442 | 0.3084 | -11.2359 | 0.1219 | 1e-05 |
No log | 48.0 | 96 | 0.6153 | 0.3438 | 0.3079 | -11.1407 | 0.1218 | 1e-05 |
No log | 49.0 | 98 | 0.6142 | 0.3434 | 0.3075 | -11.0878 | 0.1259 | 1e-05 |
No log | 50.0 | 100 | 0.6125 | 0.3427 | 0.3071 | -11.1648 | 0.1241 | 1e-05 |
No log | 51.0 | 102 | 0.6131 | 0.3430 | 0.3072 | -11.2371 | 0.1274 | 1e-05 |
No log | 52.0 | 104 | 0.6137 | 0.3434 | 0.3077 | -11.3909 | 0.1274 | 1e-05 |
No log | 53.0 | 106 | 0.6139 | 0.3434 | 0.3077 | -11.5018 | 0.1224 | 1e-05 |
No log | 54.0 | 108 | 0.6157 | 0.3445 | 0.3089 | -11.6674 | 0.1222 | 1e-05 |
No log | 55.0 | 110 | 0.6168 | 0.3448 | 0.3090 | -11.6467 | 0.1222 | 1e-05 |
No log | 56.0 | 112 | 0.6140 | 0.3434 | 0.3077 | -11.4968 | 0.1250 | 1e-05 |
No log | 57.0 | 114 | 0.6133 | 0.3430 | 0.3071 | -11.5002 | 0.1216 | 0.0000 |
No log | 58.0 | 116 | 0.6130 | 0.3428 | 0.3070 | -11.4475 | 0.1210 | 0.0000 |
No log | 59.0 | 118 | 0.6150 | 0.3441 | 0.3083 | -11.5562 | 0.1178 | 0.0000 |
No log | 60.0 | 120 | 0.6167 | 0.3450 | 0.3092 | -11.4676 | 0.1243 | 0.0000 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1