bilma_MX / README.md
guillermoruiz's picture
Update README.md
ac6585c verified
|
raw
history blame
1.63 kB
metadata
license: mit
language:
  - es
metrics:
  - accuracy
pipeline_tag: fill-mask
widget:
  - text: Vamos a comer unos [MASK]
    example_title: Vamos a comer unos tacos
tags:
  - code
  - nlp
  - custom
  - bilma
tokenizer:
  - 'yes'

BILMA (Bert In Latin aMericA)

Bilma is a BERT implementation in tensorflow and trained on the Masked Language Model task under the https://sadit.github.io/regional-spanish-models-talk-2022/ datasets.

The accuracy of the models trained on the MLM task for different regions are:

bilma-mlm-comp

Pre-requisites

You will need TensorFlow 2.4 or newer.

Quick guide

Install the following version for the transformers library

!pip install transformers==4.30.2

Instanciate the tokenizer and the trained model

from transformers import AutoTokenizer
tok = AutoTokenizer.from_pretrained("guillermoruiz/bilma_mx")
from transformers import TFAutoModel
model = TFAutoModel.from_pretrained("guillermoruiz/bilma_mx", trust_remote_code=True, include_top=False)

Now,we will need some text and then pass it through the tokenizer:

text = ["Vamos a comer [MASK].",
        "Hace mucho que no voy al [MASK]."]
t = tok(text, padding="max_length", return_tensors="tf", max_length=280)

With this, we are ready to use the model

p = model(t)

Now, we get the most likely words with:

import tensorflow as tf
tok.batch_decode(tf.argmax(p["logits"], 2)[:,1:], skip_special_tokens=True)

which produces the output:

['vamos a comer tacos.', 'hace mucho que no voy al gym.']