See axolotl config
axolotl version: 0.4.0
base_model: GeneZC/MiniChat-2-3B
base_model_config: GeneZC/MiniChat-2-3B
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: THUDM/AgentInstruct
type: sharegpt
conversation: llama-2
split: os
- path: THUDM/AgentInstruct
type: sharegpt
conversation: llama-2
split: db
- path: THUDM/AgentInstruct
type: sharegpt
conversation: llama-2
split: alfworld
- path: THUDM/AgentInstruct
type: sharegpt
conversation: llama-2
split: webshop
- path: THUDM/AgentInstruct
type: sharegpt
conversation: llama-2
split: kg
- path: THUDM/AgentInstruct
type: sharegpt
conversation: llama-2
split: mind2web
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./qlora-out
hub_model_id: gultar/Automata-Minichat-3b
wandb_project: "Mistral-Agent"
wandb_log_model: "checkpoint"
chat_template: inst
adapter: qlora
lora_model_dir:
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
Automata-Minichat-3b
This model is a fine-tuned version of GeneZC/MiniChat-2-3B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3139
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9648 | 0.01 | 1 | 0.9762 |
0.5564 | 0.26 | 19 | 0.5018 |
0.2629 | 0.52 | 38 | 0.3400 |
0.2789 | 0.78 | 57 | 0.3139 |
Framework versions
- PEFT 0.8.2.dev0
- Transformers 4.37.0
- Pytorch 2.0.1+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 3
Model tree for gultar/Automata-Minichat-3b
Base model
GeneZC/MiniChat-2-3B