lilt-en-funsd / README.md
gurugaurav's picture
End of training
9bdef74
metadata
license: mit
tags:
  - generated_from_trainer
datasets:
  - funsd-layoutlmv3
model-index:
  - name: lilt-en-funsd
    results: []

lilt-en-funsd

This model is a fine-tuned version of SCUT-DLVCLab/lilt-roberta-en-base on the funsd-layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5496
  • Answer: {'precision': 0.875, 'recall': 0.9253365973072215, 'f1': 0.8994646044021416, 'number': 817}
  • Header: {'precision': 0.6276595744680851, 'recall': 0.4957983193277311, 'f1': 0.5539906103286385, 'number': 119}
  • Question: {'precision': 0.9049360146252285, 'recall': 0.9192200557103064, 'f1': 0.9120221096269001, 'number': 1077}
  • Overall Precision: 0.8796
  • Overall Recall: 0.8967
  • Overall F1: 0.8881
  • Overall Accuracy: 0.8134

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2500

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.434 10.53 200 1.0227 {'precision': 0.8357705286839145, 'recall': 0.9094247246022031, 'f1': 0.8710433763188746, 'number': 817} {'precision': 0.7058823529411765, 'recall': 0.40336134453781514, 'f1': 0.5133689839572192, 'number': 119} {'precision': 0.8683522231909329, 'recall': 0.924791086350975, 'f1': 0.89568345323741, 'number': 1077} 0.8493 0.8877 0.8681 0.7935
0.0484 21.05 400 1.3626 {'precision': 0.8098360655737705, 'recall': 0.9069767441860465, 'f1': 0.8556581986143187, 'number': 817} {'precision': 0.6086956521739131, 'recall': 0.47058823529411764, 'f1': 0.5308056872037914, 'number': 119} {'precision': 0.8613333333333333, 'recall': 0.8997214484679665, 'f1': 0.8801089918256131, 'number': 1077} 0.8283 0.8773 0.8521 0.7995
0.0168 31.58 600 1.3003 {'precision': 0.8440046565774156, 'recall': 0.8873929008567931, 'f1': 0.8651551312649164, 'number': 817} {'precision': 0.6421052631578947, 'recall': 0.5126050420168067, 'f1': 0.5700934579439252, 'number': 119} {'precision': 0.8776595744680851, 'recall': 0.9192200557103064, 'f1': 0.8979591836734694, 'number': 1077} 0.8530 0.8823 0.8674 0.8189
0.008 42.11 800 1.3225 {'precision': 0.8584795321637427, 'recall': 0.8984088127294981, 'f1': 0.8779904306220095, 'number': 817} {'precision': 0.5736434108527132, 'recall': 0.6218487394957983, 'f1': 0.596774193548387, 'number': 119} {'precision': 0.888468809073724, 'recall': 0.872794800371402, 'f1': 0.8805620608899298, 'number': 1077} 0.8560 0.8684 0.8621 0.8210
0.0059 52.63 1000 1.6362 {'precision': 0.8307522123893806, 'recall': 0.9192166462668299, 'f1': 0.8727484020918072, 'number': 817} {'precision': 0.6419753086419753, 'recall': 0.4369747899159664, 'f1': 0.52, 'number': 119} {'precision': 0.8944444444444445, 'recall': 0.8969359331476323, 'f1': 0.8956884561891516, 'number': 1077} 0.8567 0.8788 0.8676 0.8061
0.0027 63.16 1200 1.6927 {'precision': 0.8269858541893362, 'recall': 0.9302325581395349, 'f1': 0.8755760368663594, 'number': 817} {'precision': 0.6046511627906976, 'recall': 0.4369747899159664, 'f1': 0.5073170731707317, 'number': 119} {'precision': 0.9000925069380203, 'recall': 0.903435468895079, 'f1': 0.901760889712697, 'number': 1077} 0.8557 0.8867 0.8709 0.7939
0.002 73.68 1400 1.4609 {'precision': 0.8479467258601554, 'recall': 0.9351285189718482, 'f1': 0.889406286379511, 'number': 817} {'precision': 0.5726495726495726, 'recall': 0.5630252100840336, 'f1': 0.5677966101694915, 'number': 119} {'precision': 0.8917431192660551, 'recall': 0.9025069637883009, 'f1': 0.8970927549607752, 'number': 1077} 0.8553 0.8957 0.8750 0.7965
0.0012 84.21 1600 1.4851 {'precision': 0.865909090909091, 'recall': 0.9326805385556916, 'f1': 0.8980553918680023, 'number': 817} {'precision': 0.6074766355140186, 'recall': 0.5462184873949579, 'f1': 0.575221238938053, 'number': 119} {'precision': 0.9008341056533827, 'recall': 0.9025069637883009, 'f1': 0.901669758812616, 'number': 1077} 0.8708 0.8937 0.8821 0.8131
0.0006 94.74 1800 1.5228 {'precision': 0.850613154960981, 'recall': 0.9339045287637698, 'f1': 0.8903150525087514, 'number': 817} {'precision': 0.594059405940594, 'recall': 0.5042016806722689, 'f1': 0.5454545454545453, 'number': 119} {'precision': 0.896709323583181, 'recall': 0.9108635097493036, 'f1': 0.9037309995393827, 'number': 1077} 0.8623 0.8962 0.8789 0.8082
0.0004 105.26 2000 1.5287 {'precision': 0.867579908675799, 'recall': 0.9302325581395349, 'f1': 0.8978145304193739, 'number': 817} {'precision': 0.6222222222222222, 'recall': 0.47058823529411764, 'f1': 0.5358851674641149, 'number': 119} {'precision': 0.8917710196779964, 'recall': 0.9257195914577531, 'f1': 0.9084282460136676, 'number': 1077} 0.8700 0.9006 0.8850 0.8128
0.0003 115.79 2200 1.5306 {'precision': 0.8766006984866124, 'recall': 0.9216646266829865, 'f1': 0.8985680190930787, 'number': 817} {'precision': 0.6263736263736264, 'recall': 0.4789915966386555, 'f1': 0.5428571428571428, 'number': 119} {'precision': 0.8902765388046388, 'recall': 0.9266480965645311, 'f1': 0.908098271155596, 'number': 1077} 0.8730 0.8982 0.8854 0.8127
0.0001 126.32 2400 1.5496 {'precision': 0.875, 'recall': 0.9253365973072215, 'f1': 0.8994646044021416, 'number': 817} {'precision': 0.6276595744680851, 'recall': 0.4957983193277311, 'f1': 0.5539906103286385, 'number': 119} {'precision': 0.9049360146252285, 'recall': 0.9192200557103064, 'f1': 0.9120221096269001, 'number': 1077} 0.8796 0.8967 0.8881 0.8134

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.0
  • Tokenizers 0.13.3