Edit model card

gustavokpc/IC_sexto

This model is a fine-tuned version of bert-large-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0832
  • Train Accuracy: 0.9695
  • Train F1 M: 0.5509
  • Train Precision M: 0.4007
  • Train Recall M: 0.9444
  • Validation Loss: 0.2387
  • Validation Accuracy: 0.9248
  • Validation F1 M: 0.5604
  • Validation Precision M: 0.4074
  • Validation Recall M: 0.9461
  • Epoch: 4

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3790, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Train F1 M Train Precision M Train Recall M Validation Loss Validation Accuracy Validation F1 M Validation Precision M Validation Recall M Epoch
0.3898 0.8294 0.3411 0.2894 0.4810 0.2440 0.8984 0.5087 0.3814 0.8079 0
0.2070 0.9228 0.4927 0.3723 0.7869 0.1911 0.9268 0.5222 0.3853 0.8520 1
0.1392 0.9467 0.5266 0.3881 0.8670 0.2310 0.9057 0.5617 0.4162 0.9092 2
0.1136 0.9570 0.5387 0.3946 0.9100 0.2265 0.9228 0.5653 0.4119 0.9501 3
0.0832 0.9695 0.5509 0.4007 0.9444 0.2387 0.9248 0.5604 0.4074 0.9461 4

Framework versions

  • Transformers 4.34.1
  • TensorFlow 2.10.0
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
7
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gustavokpc/IC_sexto

Finetuned
(106)
this model