haihuynh's picture
End of training
2feb4fe verified
|
raw
history blame
1.75 kB
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: UIT-VSFC-Bert-CLSModel-v3
    results: []

UIT-VSFC-Bert-CLSModel-v3

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4363
  • Accuracy: 0.8547
  • F1: 0.5826
  • Precision: 0.5694
  • Recall: 0.5965

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 90 0.6868 0.7366 0.5079 0.6612 0.5146
No log 2.0 180 0.4750 0.8465 0.5775 0.5651 0.5929
No log 3.0 270 0.4363 0.8547 0.5826 0.5694 0.5965

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1