haizad's picture
Add get started code
dd77ab9
metadata
license: mit
library_name: sklearn
tags:
  - sklearn
  - skops
  - tabular-classification
model_format: pickle
model_file: model.pkl
widget:
  structuredData:
    BsmtFinSF1:
      - 1280
      - 1464
      - 0
    BsmtUnfSF:
      - 402
      - 536
      - 795
    Condition2:
      - Norm
      - Norm
      - Norm
    ExterQual:
      - Ex
      - Gd
      - Gd
    Foundation:
      - PConc
      - PConc
      - PConc
    GarageCars:
      - 3
      - 3
      - 1
    GarageType:
      - BuiltIn
      - Attchd
      - Detchd
    Heating:
      - GasA
      - GasA
      - GasA
    HeatingQC:
      - Ex
      - Ex
      - TA
    HouseStyle:
      - 2Story
      - 1Story
      - 2.5Fin
    MSSubClass:
      - 60
      - 20
      - 75
    MasVnrArea:
      - 272
      - 246
      - 0
    MasVnrType:
      - Stone
      - Stone
      - .nan
    MiscFeature:
      - .nan
      - .nan
      - .nan
    MoSold:
      - 8
      - 7
      - 3
    OverallQual:
      - 10
      - 8
      - 4
    Street:
      - Pave
      - Pave
      - Pave
    TotalBsmtSF:
      - 1682
      - 2000
      - 795
    YearRemodAdd:
      - 2008
      - 2005
      - 1950
    YrSold:
      - 2008
      - 2007
      - 2006

Model description

This is a random forest regression model trained on ames housing dataset from OpenML.

Intended uses & limitations

This model is not ready to be used in production.

Training Procedure

[More Information Needed]

Hyperparameters

Click to expand
Hyperparameter Value
memory
steps [('columntransformer', ColumnTransformer(transformers=[('simpleimputer',
SimpleImputer(add_indicator=True),
<sklearn.compose._column_transformer.make_column_selector object at 0x000001EF7028B6D0>),
('ordinalencoder',
OrdinalEncoder(encoded_missing_value=-2,
handle_unknown='use_encoded_value',
unknown_value=-1),
<sklearn.compose._column_transformer.make_column_selector object at 0x000001EF252211B0>)])), ('randomforestregressor', RandomForestRegressor(random_state=42))]
verbose False
columntransformer ColumnTransformer(transformers=[('simpleimputer',
SimpleImputer(add_indicator=True),
<sklearn.compose._column_transformer.make_column_selector object at 0x000001EF7028B6D0>),
('ordinalencoder',
OrdinalEncoder(encoded_missing_value=-2,
handle_unknown='use_encoded_value',
unknown_value=-1),
<sklearn.compose._column_transformer.make_column_selector object at 0x000001EF252211B0>)])
randomforestregressor RandomForestRegressor(random_state=42)
columntransformer__n_jobs
columntransformer__remainder drop
columntransformer__sparse_threshold 0.3
columntransformer__transformer_weights
columntransformer__transformers [('simpleimputer', SimpleImputer(add_indicator=True), <sklearn.compose._column_transformer.make_column_selector object at 0x000001EF7028B6D0>), ('ordinalencoder', OrdinalEncoder(encoded_missing_value=-2, handle_unknown='use_encoded_value',
unknown_value=-1), <sklearn.compose._column_transformer.make_column_selector object at 0x000001EF252211B0>)]
columntransformer__verbose False
columntransformer__verbose_feature_names_out True
columntransformer__simpleimputer SimpleImputer(add_indicator=True)
columntransformer__ordinalencoder OrdinalEncoder(encoded_missing_value=-2, handle_unknown='use_encoded_value',
unknown_value=-1)
columntransformer__simpleimputer__add_indicator True
columntransformer__simpleimputer__copy True
columntransformer__simpleimputer__fill_value
columntransformer__simpleimputer__keep_empty_features False
columntransformer__simpleimputer__missing_values nan
columntransformer__simpleimputer__strategy mean
columntransformer__simpleimputer__verbose deprecated
columntransformer__ordinalencoder__categories auto
columntransformer__ordinalencoder__dtype <class 'numpy.float64'>
columntransformer__ordinalencoder__encoded_missing_value -2
columntransformer__ordinalencoder__handle_unknown use_encoded_value
columntransformer__ordinalencoder__unknown_value -1
randomforestregressor__bootstrap True
randomforestregressor__ccp_alpha 0.0
randomforestregressor__criterion squared_error
randomforestregressor__max_depth
randomforestregressor__max_features 1.0
randomforestregressor__max_leaf_nodes
randomforestregressor__max_samples
randomforestregressor__min_impurity_decrease 0.0
randomforestregressor__min_samples_leaf 1
randomforestregressor__min_samples_split 2
randomforestregressor__min_weight_fraction_leaf 0.0
randomforestregressor__n_estimators 100
randomforestregressor__n_jobs
randomforestregressor__oob_score False
randomforestregressor__random_state 42
randomforestregressor__verbose 0
randomforestregressor__warm_start False

Model Plot

Pipeline(steps=[('columntransformer',ColumnTransformer(transformers=[('simpleimputer',SimpleImputer(add_indicator=True),<sklearn.compose._column_transformer.make_column_selector object at 0x000001EF7028B6D0>),('ordinalencoder',OrdinalEncoder(encoded_missing_value=-2,handle_unknown='use_encoded_value',unknown_value=-1),<sklearn.compose._column_transformer.make_column_selector object at 0x000001EF252211B0>)])),('randomforestregressor',RandomForestRegressor(random_state=42))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

Evaluation Results

Metric Value
R2 score 0.831021
MAE 0.111169

How to Get Started with the Model

Use the following code to get started:

import joblib
from skops.hub_utils import download
import json
import pandas as pd
download(repo_id="haizad/ames-housing-random-forest-predictor", dst='ames-housing-random-forest-predictor')
pipeline = joblib.load( "ames-housing-random-forest-predictor/model.pkl")
with open("ames-housing-random-forest-predictor/config.json") as f:
    config = json.load(f)
pipeline.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))

Model Card Authors

This model card is written by following authors:

[More Information Needed]

Model Card Contact

You can contact the model card authors through following channels: [More Information Needed]

Citation

Below you can find information related to citation.

BibTeX:

[More Information Needed]

Intended uses & limitations

This model is not ready to be used in production.

Evaluation

Evaluation