metadata
license: mit
library_name: sklearn
tags:
- sklearn
- skops
- tabular-classification
model_format: pickle
model_file: model.pkl
widget:
structuredData:
BsmtFinSF1:
- 1280
- 1464
- 0
BsmtUnfSF:
- 402
- 536
- 795
Condition2:
- Norm
- Norm
- Norm
ExterQual:
- Ex
- Gd
- Gd
Foundation:
- PConc
- PConc
- PConc
GarageCars:
- 3
- 3
- 1
GarageType:
- BuiltIn
- Attchd
- Detchd
Heating:
- GasA
- GasA
- GasA
HeatingQC:
- Ex
- Ex
- TA
HouseStyle:
- 2Story
- 1Story
- 2.5Fin
MSSubClass:
- 60
- 20
- 75
MasVnrArea:
- 272
- 246
- 0
MasVnrType:
- Stone
- Stone
- .nan
MiscFeature:
- .nan
- .nan
- .nan
MoSold:
- 8
- 7
- 3
OverallQual:
- 10
- 8
- 4
Street:
- Pave
- Pave
- Pave
TotalBsmtSF:
- 1682
- 2000
- 795
YearRemodAdd:
- 2008
- 2005
- 1950
YrSold:
- 2008
- 2007
- 2006
Model description
This is a random forest regression model trained on ames housing dataset from OpenML.
Intended uses & limitations
This model is not ready to be used in production.
Training Procedure
[More Information Needed]
Hyperparameters
Click to expand
Hyperparameter | Value |
---|---|
memory | |
steps | [('columntransformer', ColumnTransformer(transformers=[('simpleimputer', SimpleImputer(add_indicator=True), <sklearn.compose._column_transformer.make_column_selector object at 0x000001EF7028B6D0>), ('ordinalencoder', OrdinalEncoder(encoded_missing_value=-2, handle_unknown='use_encoded_value', unknown_value=-1), <sklearn.compose._column_transformer.make_column_selector object at 0x000001EF252211B0>)])), ('randomforestregressor', RandomForestRegressor(random_state=42))] |
verbose | False |
columntransformer | ColumnTransformer(transformers=[('simpleimputer', SimpleImputer(add_indicator=True), <sklearn.compose._column_transformer.make_column_selector object at 0x000001EF7028B6D0>), ('ordinalencoder', OrdinalEncoder(encoded_missing_value=-2, handle_unknown='use_encoded_value', unknown_value=-1), <sklearn.compose._column_transformer.make_column_selector object at 0x000001EF252211B0>)]) |
randomforestregressor | RandomForestRegressor(random_state=42) |
columntransformer__n_jobs | |
columntransformer__remainder | drop |
columntransformer__sparse_threshold | 0.3 |
columntransformer__transformer_weights | |
columntransformer__transformers | [('simpleimputer', SimpleImputer(add_indicator=True), <sklearn.compose._column_transformer.make_column_selector object at 0x000001EF7028B6D0>), ('ordinalencoder', OrdinalEncoder(encoded_missing_value=-2, handle_unknown='use_encoded_value', unknown_value=-1), <sklearn.compose._column_transformer.make_column_selector object at 0x000001EF252211B0>)] |
columntransformer__verbose | False |
columntransformer__verbose_feature_names_out | True |
columntransformer__simpleimputer | SimpleImputer(add_indicator=True) |
columntransformer__ordinalencoder | OrdinalEncoder(encoded_missing_value=-2, handle_unknown='use_encoded_value', unknown_value=-1) |
columntransformer__simpleimputer__add_indicator | True |
columntransformer__simpleimputer__copy | True |
columntransformer__simpleimputer__fill_value | |
columntransformer__simpleimputer__keep_empty_features | False |
columntransformer__simpleimputer__missing_values | nan |
columntransformer__simpleimputer__strategy | mean |
columntransformer__simpleimputer__verbose | deprecated |
columntransformer__ordinalencoder__categories | auto |
columntransformer__ordinalencoder__dtype | <class 'numpy.float64'> |
columntransformer__ordinalencoder__encoded_missing_value | -2 |
columntransformer__ordinalencoder__handle_unknown | use_encoded_value |
columntransformer__ordinalencoder__unknown_value | -1 |
randomforestregressor__bootstrap | True |
randomforestregressor__ccp_alpha | 0.0 |
randomforestregressor__criterion | squared_error |
randomforestregressor__max_depth | |
randomforestregressor__max_features | 1.0 |
randomforestregressor__max_leaf_nodes | |
randomforestregressor__max_samples | |
randomforestregressor__min_impurity_decrease | 0.0 |
randomforestregressor__min_samples_leaf | 1 |
randomforestregressor__min_samples_split | 2 |
randomforestregressor__min_weight_fraction_leaf | 0.0 |
randomforestregressor__n_estimators | 100 |
randomforestregressor__n_jobs | |
randomforestregressor__oob_score | False |
randomforestregressor__random_state | 42 |
randomforestregressor__verbose | 0 |
randomforestregressor__warm_start | False |
Model Plot
Pipeline(steps=[('columntransformer',ColumnTransformer(transformers=[('simpleimputer',SimpleImputer(add_indicator=True),<sklearn.compose._column_transformer.make_column_selector object at 0x000001EF7028B6D0>),('ordinalencoder',OrdinalEncoder(encoded_missing_value=-2,handle_unknown='use_encoded_value',unknown_value=-1),<sklearn.compose._column_transformer.make_column_selector object at 0x000001EF252211B0>)])),('randomforestregressor',RandomForestRegressor(random_state=42))])In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
Pipeline(steps=[('columntransformer',ColumnTransformer(transformers=[('simpleimputer',SimpleImputer(add_indicator=True),<sklearn.compose._column_transformer.make_column_selector object at 0x000001EF7028B6D0>),('ordinalencoder',OrdinalEncoder(encoded_missing_value=-2,handle_unknown='use_encoded_value',unknown_value=-1),<sklearn.compose._column_transformer.make_column_selector object at 0x000001EF252211B0>)])),('randomforestregressor',RandomForestRegressor(random_state=42))])
ColumnTransformer(transformers=[('simpleimputer',SimpleImputer(add_indicator=True),<sklearn.compose._column_transformer.make_column_selector object at 0x000001EF7028B6D0>),('ordinalencoder',OrdinalEncoder(encoded_missing_value=-2,handle_unknown='use_encoded_value',unknown_value=-1),<sklearn.compose._column_transformer.make_column_selector object at 0x000001EF252211B0>)])
<sklearn.compose._column_transformer.make_column_selector object at 0x000001EF7028B6D0>
SimpleImputer(add_indicator=True)
<sklearn.compose._column_transformer.make_column_selector object at 0x000001EF252211B0>
OrdinalEncoder(encoded_missing_value=-2, handle_unknown='use_encoded_value',unknown_value=-1)
RandomForestRegressor(random_state=42)
Evaluation Results
Metric | Value |
---|---|
R2 score | 0.831021 |
MAE | 0.111169 |
How to Get Started with the Model
Use the following code to get started:
import joblib
from skops.hub_utils import download
import json
import pandas as pd
download(repo_id="haizad/ames-housing-random-forest-predictor", dst='ames-housing-random-forest-predictor')
pipeline = joblib.load( "ames-housing-random-forest-predictor/model.pkl")
with open("ames-housing-random-forest-predictor/config.json") as f:
config = json.load(f)
pipeline.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))
Model Card Authors
This model card is written by following authors:
[More Information Needed]
Model Card Contact
You can contact the model card authors through following channels: [More Information Needed]
Citation
Below you can find information related to citation.
BibTeX:
[More Information Needed]
Intended uses & limitations
This model is not ready to be used in production.