Edit model card

swin-transformer-results

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8055
  • Accuracy: 0.6794
  • F1: 0.6810
  • Precision: 0.6904

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision
1.0686 0.1952 500 1.0585 0.5266 0.5042 0.5355
1.3283 0.3903 1000 1.0015 0.5722 0.5794 0.6006
0.991 0.5855 1500 0.9601 0.5828 0.5865 0.6194
0.7919 0.7806 2000 0.9066 0.6135 0.6191 0.6580
0.9748 0.9758 2500 0.8327 0.6460 0.6443 0.6458
0.7183 1.1710 3000 0.8808 0.6421 0.6419 0.6638
0.769 1.3661 3500 0.8454 0.6526 0.6483 0.6553
0.8558 1.5613 4000 0.8773 0.6482 0.6364 0.6454
0.6713 1.7564 4500 0.8338 0.6561 0.6560 0.6711
0.7476 1.9516 5000 0.8083 0.6632 0.6636 0.6690
0.6896 2.1468 5500 0.8055 0.6794 0.6810 0.6904
0.648 2.3419 6000 0.8252 0.6697 0.6726 0.6822
0.5969 2.5371 6500 0.8179 0.6697 0.6676 0.6661
0.7098 2.7322 7000 0.8139 0.6724 0.6705 0.6698
0.5318 2.9274 7500 0.8033 0.6790 0.6783 0.6793

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cpu
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
4
Safetensors
Model size
27.6M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for hamnabint/swin-transformer-results

Finetuned
(454)
this model