|
--- |
|
license: cc-by-nc-4.0 |
|
--- |
|
|
|
Github repo: https://github.com/magic-research/piecewise-rectified-flow <br> |
|
Project page: https://piecewise-rectified-flow.github.io/ |
|
|
|
```python |
|
import torch, torchvision |
|
from diffusers import StableDiffusionPipeline, UNet2DConditionModel |
|
from src.utils_perflow import merge_delta_weights_into_unet |
|
from src.scheduler_perflow import PeRFlowScheduler |
|
delta_weights = UNet2DConditionModel.from_pretrained("hansyan/piecewise-rectified-flow-delta-weights", torch_dtype=torch.float16, variant="v0-1",).state_dict() |
|
pipe = StableDiffusionPipeline.from_pretrained("Lykon/dreamshaper-8", torch_dtype=torch.float16,) |
|
pipe = merge_delta_weights_into_unet(pipe, delta_weights) |
|
pipe.scheduler = PeRFlowScheduler.from_config(pipe.scheduler.config, prediction_type="epsilon", num_time_windows=4) |
|
pipe.to("cuda", torch.float16) |
|
|
|
prompts_list = ["A man with brown skin, a beard, and dark eyes", "A colorful bird standing on the tree, open beak",] |
|
for i, prompt in enumerate(prompts_list): |
|
generator = torch.Generator("cuda").manual_seed(1024) |
|
prompt = "RAW photo, 8k uhd, dslr, high quality, film grain, highly detailed, masterpiece; " + prompt |
|
neg_prompt = "distorted, blur, smooth, low-quality, warm, haze, over-saturated, high-contrast, out of focus, dark" |
|
samples = pipe( |
|
prompt = [prompt] * 8, |
|
negative_prompt = [neg_prompt] * 8, |
|
height = 512, |
|
width = 512, |
|
num_inference_steps = 8, |
|
guidance_scale = 7.5, |
|
generator = generator, |
|
output_type = 'pt', |
|
).images |
|
torchvision.utils.save_image(torchvision.utils.make_grid(samples, nrow=4), f"tmp_{i}.png") |
|
|
|
``` |