TRL Model

This is a TRL language model that has been fine-tuned with reinforcement learning to guide the model outputs according to a simulated human feedback. The model was fine-tuned for classification of cancer / diabetes based on clinical notes.

pip install torch transformers trl peft

Usage

from transformers import AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead
from peft import LoraConfig

tokenizer_kwargs = {
  "padding": "max_length",
  "truncation": True,
  "return_tensors": "pt",
  "padding_side": "left"
              }

tokenizer = AutoTokenizer.from_pretrained("hanyinwang/layer-project-diagnostic-mistral", **tokenizer_kwargs)
tokenizer.pad_token = tokenizer.eos_token

generation_kwargs = {
  "min_length": -1,
  "top_k": 40,
  "top_p": 0.95,
  "do_sample": True,
  "pad_token_id": tokenizer.eos_token_id,
  "max_new_tokens":11,
  "temperature":0.1,
  "repetition_penalty":1.2
}

model = AutoModelForCausalLMWithValueHead.from_pretrained("hanyinwang/layer-project-diagnostic-mistral").cuda()

def format_prompt_mistral(text, condition):
    prompt = """<s>[INST]You are a medical doctor specialized in %s diagnosis. 
From the provided document, assert if the patient historically and currently has %s.
For each condition, only pick from "YES", "NO", or "MAYBE". And you must follow format without anything further. The results have to be directly parseable with python json.loads(). 
Sample output: {"%s": "MAYBE"}
Never output anything beyond the format.[/INST]
Provided document: %s"""%(condition, condition, condition, text)
    return prompt

query_tensors = tokenizer.encode(format_prompt_mistral(<note>, <condition>), return_tensors="pt")
# <note>: clinical note
# <condition>: "cancer" or "diabetes"
prompt_length = query_tensors.shape[1]

outputs = model.generate(query_tensors.cuda(), **generation_kwargs)
response = tokenizer.decode(outputs[0][prompt_length:])
Downloads last month
10
Video Preview
loading