harshiv commited on
Commit
04f76f7
·
1 Parent(s): 08f8975

Delete Untitled2.ipynb

Browse files
Files changed (1) hide show
  1. Untitled2.ipynb +0 -158
Untitled2.ipynb DELETED
@@ -1,158 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": 3,
6
- "id": "2a0f61a3",
7
- "metadata": {},
8
- "outputs": [
9
- {
10
- "name": "stdout",
11
- "output_type": "stream",
12
- "text": [
13
- "Accuracy: 0.8417508417508418\n",
14
- " * Serving Flask app \"__main__\" (lazy loading)\n",
15
- " * Environment: production\n",
16
- "\u001b[31m WARNING: This is a development server. Do not use it in a production deployment.\u001b[0m\n",
17
- "\u001b[2m Use a production WSGI server instead.\u001b[0m\n",
18
- " * Debug mode: on\n"
19
- ]
20
- },
21
- {
22
- "name": "stderr",
23
- "output_type": "stream",
24
- "text": [
25
- " * Restarting with watchdog (windowsapi)\n"
26
- ]
27
- },
28
- {
29
- "ename": "SystemExit",
30
- "evalue": "1",
31
- "output_type": "error",
32
- "traceback": [
33
- "An exception has occurred, use %tb to see the full traceback.\n",
34
- "\u001b[1;31mSystemExit\u001b[0m\u001b[1;31m:\u001b[0m 1\n"
35
- ]
36
- },
37
- {
38
- "name": "stderr",
39
- "output_type": "stream",
40
- "text": [
41
- "C:\\Users\\91958\\anaconda3\\lib\\site-packages\\IPython\\core\\interactiveshell.py:3377: UserWarning: To exit: use 'exit', 'quit', or Ctrl-D.\n",
42
- " warn(\"To exit: use 'exit', 'quit', or Ctrl-D.\", stacklevel=1)\n"
43
- ]
44
- }
45
- ],
46
- "source": [
47
- "import pandas as pd\n",
48
- "from flask import Flask, request, jsonify\n",
49
- "\n",
50
- "from sklearn.compose import ColumnTransformer\n",
51
- "from sklearn.ensemble import RandomForestClassifier\n",
52
- "from sklearn.impute import SimpleImputer\n",
53
- "from sklearn.model_selection import train_test_split\n",
54
- "from sklearn.pipeline import Pipeline\n",
55
- "from sklearn.preprocessing import LabelEncoder, StandardScaler\n",
56
- "\n",
57
- "# Load the CSV data\n",
58
- "data = pd.read_csv('dataset.csv')\n",
59
- "\n",
60
- "# Split the data into features and labels\n",
61
- "X = data.drop('PlacedOrNot', axis=1)\n",
62
- "y = data['PlacedOrNot']\n",
63
- "\n",
64
- "# Encode categorical features\n",
65
- "categorical_features = ['HistoryOfBacklogs']\n",
66
- "for feature in categorical_features:\n",
67
- " encoder = LabelEncoder()\n",
68
- " X[feature] = encoder.fit_transform(X[feature])\n",
69
- "\n",
70
- "# Split the data into training and testing sets\n",
71
- "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
72
- "\n",
73
- "# Create the pipeline\n",
74
- "numerical_features = ['Internships', 'CGPA']\n",
75
- "numerical_transformer = StandardScaler()\n",
76
- "categorical_features = [ 'HistoryOfBacklogs']\n",
77
- "categorical_transformer = SimpleImputer(strategy='most_frequent')\n",
78
- "preprocessor = ColumnTransformer(\n",
79
- " transformers=[\n",
80
- " ('num', numerical_transformer, numerical_features),\n",
81
- " ('cat', categorical_transformer, categorical_features)\n",
82
- " ])\n",
83
- "\n",
84
- "pipeline = Pipeline([\n",
85
- " ('preprocessor', preprocessor),\n",
86
- " ('classifier', RandomForestClassifier(random_state=42))\n",
87
- "])\n",
88
- "\n",
89
- "# Train the model\n",
90
- "pipeline.fit(X_train, y_train)\n",
91
- "\n",
92
- "# Evaluate the model\n",
93
- "accuracy = pipeline.score(X_test, y_test)\n",
94
- "print('Accuracy:', accuracy)\n",
95
- "\n",
96
- "# Create Flask app\n",
97
- "app = Flask(__name__)\n",
98
- "\n",
99
- "# Define API route for making predictions\n",
100
- "@app.route('/predict', methods=['POST'])\n",
101
- "def predict():\n",
102
- " # Get input data from request\n",
103
- " data = request.get_json()\n",
104
- "\n",
105
- " # Convert input data to dataframe\n",
106
- " input_data = pd.DataFrame(data, index=[0])\n",
107
- "\n",
108
- " # Make predictions using the trained pipeline\n",
109
- " predictions = pipeline.predict(input_data)\n",
110
- "\n",
111
- " # Prepare response\n",
112
- " response = {'prediction': predictions[0]}\n",
113
- " return jsonify(response)\n",
114
- "\n",
115
- "# Run the Flask app\n",
116
- "if __name__ == '__main__':\n",
117
- " app.run(debug=True)\n"
118
- ]
119
- },
120
- {
121
- "cell_type": "code",
122
- "execution_count": null,
123
- "id": "8e941b77",
124
- "metadata": {},
125
- "outputs": [],
126
- "source": []
127
- },
128
- {
129
- "cell_type": "code",
130
- "execution_count": null,
131
- "id": "4a2788a3",
132
- "metadata": {},
133
- "outputs": [],
134
- "source": []
135
- }
136
- ],
137
- "metadata": {
138
- "kernelspec": {
139
- "display_name": "Python 3 (ipykernel)",
140
- "language": "python",
141
- "name": "python3"
142
- },
143
- "language_info": {
144
- "codemirror_mode": {
145
- "name": "ipython",
146
- "version": 3
147
- },
148
- "file_extension": ".py",
149
- "mimetype": "text/x-python",
150
- "name": "python",
151
- "nbconvert_exporter": "python",
152
- "pygments_lexer": "ipython3",
153
- "version": "3.9.12"
154
- }
155
- },
156
- "nbformat": 4,
157
- "nbformat_minor": 5
158
- }