metadata
base_model: haryoaw/scenario-TCR-NER_data-univner_en
library_name: transformers
license: mit
metrics:
- precision
- recall
- f1
- accuracy
tags:
- generated_from_trainer
model-index:
- name: scenario-non-kd-po-ner-full-mdeberta_data-univner_en44
results: []
scenario-non-kd-po-ner-full-mdeberta_data-univner_en44
This model is a fine-tuned version of haryoaw/scenario-TCR-NER_data-univner_en on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1418
- Precision: 0.8347
- Recall: 0.8416
- F1: 0.8381
- Accuracy: 0.9853
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 44
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0023 | 1.2755 | 500 | 0.1132 | 0.8279 | 0.8364 | 0.8321 | 0.9857 |
0.0022 | 2.5510 | 1000 | 0.1035 | 0.8234 | 0.8540 | 0.8384 | 0.9858 |
0.0021 | 3.8265 | 1500 | 0.0987 | 0.8228 | 0.8509 | 0.8366 | 0.9851 |
0.0013 | 5.1020 | 2000 | 0.1237 | 0.7955 | 0.8458 | 0.8199 | 0.9839 |
0.0008 | 6.3776 | 2500 | 0.1278 | 0.8173 | 0.8292 | 0.8232 | 0.9845 |
0.0007 | 7.6531 | 3000 | 0.1257 | 0.8257 | 0.8437 | 0.8346 | 0.9848 |
0.0006 | 8.9286 | 3500 | 0.1257 | 0.8466 | 0.8282 | 0.8373 | 0.9855 |
0.0011 | 10.2041 | 4000 | 0.1250 | 0.8141 | 0.8251 | 0.8195 | 0.9843 |
0.0007 | 11.4796 | 4500 | 0.1240 | 0.8206 | 0.8240 | 0.8223 | 0.9840 |
0.0004 | 12.7551 | 5000 | 0.1297 | 0.8192 | 0.8395 | 0.8292 | 0.9847 |
0.0008 | 14.0306 | 5500 | 0.1342 | 0.8270 | 0.8116 | 0.8192 | 0.9844 |
0.0004 | 15.3061 | 6000 | 0.1295 | 0.8147 | 0.8240 | 0.8194 | 0.9843 |
0.0004 | 16.5816 | 6500 | 0.1374 | 0.8118 | 0.8437 | 0.8274 | 0.9839 |
0.0003 | 17.8571 | 7000 | 0.1416 | 0.8092 | 0.8209 | 0.8150 | 0.9837 |
0.0003 | 19.1327 | 7500 | 0.1264 | 0.8249 | 0.8489 | 0.8367 | 0.9852 |
0.0002 | 20.4082 | 8000 | 0.1323 | 0.8262 | 0.8416 | 0.8338 | 0.9854 |
0.0003 | 21.6837 | 8500 | 0.1341 | 0.8239 | 0.8427 | 0.8332 | 0.9854 |
0.0001 | 22.9592 | 9000 | 0.1400 | 0.8251 | 0.8499 | 0.8373 | 0.9852 |
0.0002 | 24.2347 | 9500 | 0.1342 | 0.8219 | 0.8406 | 0.8311 | 0.9849 |
0.0002 | 25.5102 | 10000 | 0.1355 | 0.8352 | 0.8447 | 0.8399 | 0.9855 |
0.0001 | 26.7857 | 10500 | 0.1454 | 0.8254 | 0.8416 | 0.8334 | 0.9846 |
0.0001 | 28.0612 | 11000 | 0.1448 | 0.8254 | 0.8416 | 0.8334 | 0.9849 |
0.0001 | 29.3367 | 11500 | 0.1418 | 0.8347 | 0.8416 | 0.8381 | 0.9853 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.19.1