haryoaw's picture
Upload tokenizer
ba6a8cb verified
metadata
base_model: microsoft/mdeberta-v3-base
library_name: transformers
license: mit
metrics:
  - precision
  - recall
  - f1
  - accuracy
tags:
  - generated_from_trainer
model-index:
  - name: scenario-non-kd-pre-ner-full-mdeberta_data-univner_en66
    results: []

scenario-non-kd-pre-ner-full-mdeberta_data-univner_en66

This model is a fine-tuned version of microsoft/mdeberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1822
  • Precision: 0.7036
  • Recall: 0.7226
  • F1: 0.7130
  • Accuracy: 0.9771

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 66
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1469 1.2755 500 0.1352 0.4213 0.4658 0.4425 0.9588
0.066 2.5510 1000 0.1071 0.5530 0.6429 0.5945 0.9700
0.0349 3.8265 1500 0.1015 0.6313 0.7267 0.6756 0.9738
0.0222 5.1020 2000 0.1179 0.6442 0.7516 0.6937 0.9748
0.0137 6.3776 2500 0.1166 0.6736 0.7350 0.7030 0.9760
0.009 7.6531 3000 0.1178 0.6533 0.7236 0.6866 0.9753
0.0068 8.9286 3500 0.1312 0.6976 0.7091 0.7033 0.9763
0.0048 10.2041 4000 0.1438 0.6793 0.7215 0.6998 0.9754
0.0038 11.4796 4500 0.1479 0.6906 0.7371 0.7131 0.9761
0.0031 12.7551 5000 0.1503 0.6745 0.7422 0.7068 0.9760
0.0025 14.0306 5500 0.1489 0.6886 0.7143 0.7012 0.9768
0.0019 15.3061 6000 0.1565 0.6755 0.7350 0.7040 0.9757
0.0018 16.5816 6500 0.1564 0.7004 0.7453 0.7222 0.9771
0.0014 17.8571 7000 0.1661 0.7066 0.7381 0.7220 0.9771
0.0013 19.1327 7500 0.1724 0.6811 0.7164 0.6983 0.9757
0.0008 20.4082 8000 0.1760 0.6788 0.7329 0.7048 0.9763
0.0007 21.6837 8500 0.1777 0.6900 0.7350 0.7118 0.9768
0.0008 22.9592 9000 0.1821 0.6795 0.7464 0.7114 0.9761
0.0006 24.2347 9500 0.1888 0.6715 0.7660 0.7157 0.9763
0.0005 25.5102 10000 0.1830 0.6973 0.7298 0.7132 0.9767
0.0005 26.7857 10500 0.1805 0.7045 0.7257 0.7149 0.9769
0.0004 28.0612 11000 0.1812 0.6963 0.7215 0.7087 0.9765
0.0003 29.3367 11500 0.1822 0.7036 0.7226 0.7130 0.9771

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.14.5
  • Tokenizers 0.19.1