xlm_r_large-baseline_model-v2-fallen-oath-3

This model is a fine-tuned version of xlm-roberta-large on SOLD dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5036
  • Precision 0: 0.8766
  • Precision 1: 0.7911
  • Recall 0: 0.8512
  • Recall 1: 0.8246
  • F1 0: 0.8637
  • F1 1: 0.8075
  • Precision Weighted: 0.8419
  • Recall Weighted: 0.8404
  • F1 Weighted: 0.8409
  • F1 Macro: 0.8356

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Precision 0 Precision 1 Recall 0 Recall 1 F1 0 F1 1 Precision Weighted Recall Weighted F1 Weighted F1 Macro
0.4937 1.0 469 0.4268 0.8346 0.7933 0.8667 0.7488 0.8503 0.7704 0.8179 0.8188 0.8179 0.8104
0.3945 2.0 938 0.3987 0.9083 0.7168 0.7603 0.8877 0.8277 0.7931 0.8305 0.812 0.8137 0.8104
0.3721 3.0 1407 0.3612 0.8654 0.7992 0.8620 0.8039 0.8637 0.8016 0.8386 0.8384 0.8385 0.8326
0.2721 4.0 1876 0.4191 0.8514 0.8246 0.8875 0.7734 0.8691 0.7982 0.8405 0.8412 0.8403 0.8336
0.2144 5.0 2345 0.5036 0.8766 0.7911 0.8512 0.8246 0.8637 0.8075 0.8419 0.8404 0.8409 0.8356

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
21
Safetensors
Model size
560M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for haturusinghe/xlm-r-large_baseline_for_subasa

Finetuned
(330)
this model