|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
pipeline_tag: fill-mask |
|
inference: false |
|
--- |
|
|
|
# Monarch Mixer-BERT |
|
|
|
The 80M checkpoint for M2-BERT-32k from the paper [Benchmarking and Building Long-Context Retrieval Models with LoCo and M2-BERT](https://arxiv.org/abs/2402.07440). |
|
|
|
Check out our [GitHub](https://github.com/HazyResearch/m2/tree/main) for instructions on how to download and fine-tune it! |
|
|
|
## How to use |
|
|
|
You can load this model using Hugging Face `AutoModel`: |
|
```python |
|
from transformers import AutoModelForMaskedLM, BertConfig |
|
config = BertConfig.from_pretrained("hazyresearch/M2-BERT-32K-Retrieval-Encoder-V1") |
|
model = AutoModelForMaskedLM.from_pretrained("hazyresearch/M2-BERT-32K-Retrieval-Encoder-V1", config=config, trust_remote_code=True) |
|
``` |
|
|
|
This model uses the Hugging Face `bert-base-uncased tokenizer`: |
|
``` |
|
from transformers import BertTokenizer |
|
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') |
|
``` |
|
|
|
## How to use |
|
|
|
This model generates embeddings for retrieval. The embeddings have a dimensionality of 768: |
|
``` |
|
from transformers import AutoTokenizer, AutoModelForMaskedLM, BertConfig |
|
|
|
max_seq_length = 32768 |
|
testing_string = "Every morning, I make a cup of coffee to start my day." |
|
config = BertConfig.from_pretrained("hazyresearch/M2-BERT-32K-Retrieval-Encoder-V1") |
|
model = AutoModelForMaskedLM.from_pretrained("hazyresearch/M2-BERT-32K-Retrieval-Encoder-V1", config=config, trust_remote_code=True) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased", model_max_length=max_seq_length) |
|
input_ids = tokenizer([testing_string], return_tensors="pt", padding="max_length", return_token_type_ids=False, truncation=True, max_length=max_seq_length) |
|
|
|
outputs = model(**input_ids) |
|
embeddings = outputs['sentence_embedding'] |
|
``` |
|
|
|
### Remote Code |
|
|
|
This model requires `trust_remote_code=True` to be passed to the `from_pretrained` method. This is because we use custom PyTorch code (see our GitHub). You should consider passing a `revision` argument that specifies the exact git commit of the code, for example: |
|
|
|
```python |
|
mlm = AutoModelForMaskedLM.from_pretrained( |
|
"hazyresearch/M2-BERT-32K-Retrieval-Encoder-V1", |
|
config=config, |
|
trust_remote_code=True, |
|
) |
|
``` |
|
|
|
### Configuration |
|
Note `use_flash_mm` is false by default. Using FlashMM is currently not supported. |