SentenceTransformer based on google-bert/bert-base-uncased
This is a sentence-transformers model finetuned from google-bert/bert-base-uncased on the stanfordnlp/snli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-uncased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("hcy5561/distilroberta-base-sentence-transformer-snli")
# Run inference
sentences = [
'A pilot dressed in a dark-colored sweater is sitting in the cock-pit of a plane with his hands crossed.',
'A pilot is sitting in his plain with his hands crossed',
'The boys are playing outside on a log.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
stanfordnlp/snli
- Dataset: stanfordnlp/snli at cdb5c3d
- Size: 494,430 training samples
- Columns:
premise
,hypothesis
, andlabel
- Approximate statistics based on the first 1000 samples:
premise hypothesis label type string string int details - min: 6 tokens
- mean: 16.24 tokens
- max: 50 tokens
- min: 4 tokens
- mean: 10.55 tokens
- max: 26 tokens
- 0: ~31.10%
- 1: ~33.40%
- 2: ~35.50%
- Samples:
premise hypothesis label Two men, one in yellow, are on a wooden boat.
Two men swimming in water
2
Two people sleep on a couch.
Two people are asleep.
0
a little boy is learning to swim with the help of a float board.
The boy is crawling.
2
- Loss:
SoftmaxLoss
Evaluation Dataset
stanfordnlp/snli
- Dataset: stanfordnlp/snli at cdb5c3d
- Size: 27,468 evaluation samples
- Columns:
premise
,hypothesis
, andlabel
- Approximate statistics based on the first 1000 samples:
premise hypothesis label type string string int details - min: 6 tokens
- mean: 16.66 tokens
- max: 44 tokens
- min: 4 tokens
- mean: 10.48 tokens
- max: 31 tokens
- 0: ~36.10%
- 1: ~31.80%
- 2: ~32.10%
- Samples:
premise hypothesis label A taxi cab driver looks stressed out in his car.
a taxi driver is stressed
0
Two men do trick in a park.
The men only sat on the bench in the park, doing nothing.
2
Two woman walking, the blond is looking at the camera wearing sunglasses making an oh face.
One lady makes a shocked face at the camera as the photographer tells the women they are lost.
1
- Loss:
SoftmaxLoss
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 4warmup_ratio
: 0.1batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falsefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss |
---|---|---|---|
0.1294 | 1000 | 0.9208 | 0.7448 |
0.2589 | 2000 | 0.7095 | 0.6462 |
0.3883 | 3000 | 0.6415 | 0.6199 |
0.5177 | 4000 | 0.6125 | 0.5940 |
0.6472 | 5000 | 0.5935 | 0.5672 |
0.7766 | 6000 | 0.5748 | 0.5550 |
0.9060 | 7000 | 0.5654 | 0.5506 |
1.0355 | 8000 | 0.5524 | 0.5376 |
1.1649 | 9000 | 0.5386 | 0.5319 |
1.2943 | 10000 | 0.5192 | 0.5361 |
1.4238 | 11000 | 0.4863 | 0.5304 |
1.5532 | 12000 | 0.4687 | 0.5278 |
1.6826 | 13000 | 0.4586 | 0.5305 |
1.8121 | 14000 | 0.4474 | 0.5222 |
1.9415 | 15000 | 0.4447 | 0.5237 |
2.0709 | 16000 | 0.434 | 0.5172 |
2.2004 | 17000 | 0.4243 | 0.5235 |
2.3298 | 18000 | 0.398 | 0.5224 |
2.4592 | 19000 | 0.3747 | 0.5344 |
2.5887 | 20000 | 0.3669 | 0.5301 |
2.7181 | 21000 | 0.3583 | 0.5406 |
2.8475 | 22000 | 0.3496 | 0.5354 |
2.9770 | 23000 | 0.3527 | 0.5324 |
3.1064 | 24000 | 0.3419 | 0.5299 |
3.2358 | 25000 | 0.3358 | 0.5456 |
3.3653 | 26000 | 0.3096 | 0.5562 |
3.4947 | 27000 | 0.2964 | 0.5644 |
3.6241 | 28000 | 0.2998 | 0.5565 |
3.7536 | 29000 | 0.2906 | 0.5590 |
3.8830 | 30000 | 0.2923 | 0.5564 |
Framework Versions
- Python: 3.10.6
- Sentence Transformers: 3.0.1
- Transformers: 4.39.3
- PyTorch: 2.2.2+cu118
- Accelerate: 0.28.0
- Datasets: 2.20.0
- Tokenizers: 0.15.2
Citation
BibTeX
Sentence Transformers and SoftmaxLoss
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for hcy5561/distilroberta-base-sentence-transformer-snli
Base model
google-bert/bert-base-uncased