PEFT
Safetensors
Korean
phi3
custom_code

Housing-Subscription-QA-Phi-3.5

Model Details

Model Description

Model Sources

from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

config = PeftConfig.from_pretrained("hecatonai/Housing-Subscription-QA-Phi-3.5")
base_model = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-mini-instruct", device_map='auto')
model = PeftModel.from_pretrained(base_model, "hecatonai/Housing-Subscription-QA-Phi-3.5", device_map='auto')

# ํ† ํฌ๋‚˜์ด์ € ๋กœ๋“œ
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct", device_map='auto')

# ์ž…๋ ฅ ํ…์ŠคํŠธ ํฌ๋งทํŒ…
def apply_chat_template(question):
    template = "<|system|>\nYou are a helpful AI assistant. The default is 2024.<|end|>\n<|user|>\n{question}<|end|>\n<|assistant|>\n"
    return template.format(question=question)

# ์ž…๋ ฅ ํ…์ŠคํŠธ ํ† ํฌ๋‚˜์ด์ง•
question = "ํˆฌ๊ธฐ๊ณผ์—ด์ง€๊ตฌ ๋˜๋Š” ์ฒญ์•ฝ๊ณผ์—ด์ง€์—ญ์—์„œ ์™ธ๊ตญ์ธ 1์ˆœ์œ„ ์ฒญ์•ฝ ๊ฐ€๋Šฅ?"
input_text = apply_chat_template(question)

inputs = tokenizer(input_text, return_tensors="pt")

# ์˜ˆ์ธก ์ˆ˜ํ–‰
outputs = model.generate(**inputs, max_length=1000)

# ์ถœ๋ ฅ ๋””์ฝ”๋”ฉ
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(decoded_output)

Bias, Risks, and Limitations

ํ•ด๋‹น ๋ชจ๋ธ์€ ๋Œ€ํ•œ๋ฏผ๊ตญ ๊ตญํ† ๊ตํ†ต๋ถ€์—์„œ ๋ฐœํ–‰ํ•œ 2022๋…„๋„ ๋ฐ 2024๋…„๋„ ์ฃผํƒ์ฒญ์•ฝ FAQ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ
Fine-Tune ํ•œ LLM์ž…๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ํ•ด๋‹น FAQ์— ํฌํ•จ๋˜์ง€ ์•Š์€ ์งˆ๋ฌธ์— ๋Œ€ํ•ด์„œ๋Š” ๋ถ€์ •ํ™•ํ•œ ๋‹ต๋ณ€์„ ํ•  ์ˆ˜ ์žˆ์œผ๋‹ˆ ์‚ฌ์šฉ์— ์œ ์˜๋ฐ”๋ž๋‹ˆ๋‹ค.

How to Get Started with the Model

Use the code below to get started with the model.

from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer

config = PeftConfig.from_pretrained("hecatonai/Housing-Subscription-QA-Phi-3.5")
base_model = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-mini-instruct", device_map='auto')
model = PeftModel.from_pretrained(base_model, "hecatonai/Housing-Subscription-QA-Phi-3.5", device_map='auto')

Using with Pipeline

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

model = AutoModelForCausalLM.from_pretrained("hecatonai/Housing-Subscription-QA-Phi-3.5", device_map='auto')

pipe = pipeline("text-generation", model=model, tokenizer="microsoft/Phi-3.5-mini-instruct", torch_dtype=torch.bfloat16, device_map="auto")
messages = [
    {"role": "system", "content": "You are a helpful AI assistant.  The default is 2024."},
    {"role": "user", "content": "ํˆฌ๊ธฐ๊ณผ์—ด์ง€๊ตฌ ๋ฐ ์ฒญ์•ฝ๊ณผ์—ด์ง€์—ญ 1์ˆœ์œ„ ์ œํ•œ๋Œ€์ƒ ๋ˆ„๊ตฌ?"}
]

prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, renormalize_logits=True, max_new_tokens=512, do_sample=False)
print(outputs[0]["generated_text"])

Result

<|system|>
You are a helpful AI assistant.  The default is 2024.<|end|>
<|user|>
ํˆฌ๊ธฐ๊ณผ์—ด์ง€๊ตฌ ๋ฐ ์ฒญ์•ฝ๊ณผ์—ด์ง€์—ญ 1์ˆœ์œ„ ์ œํ•œ๋Œ€์ƒ ๋ˆ„๊ตฌ?<|end|>
<|assistant|>
2024๋…„ ๋‹ต๋ณ€: ํˆฌ๊ธฐ๊ณผ์—ด์ง€๊ตฌ ๋ฐ ์ฒญ์•ฝ๊ณผ์—ด์ง€์—ญ์—์„œ ๊ตญ๋ฏผ์ฃผํƒ๊ณผ ๋ฏผ์˜์ฃผํƒ 1์ˆœ์œ„ ์ œํ•œ ๋Œ€์ƒ์€, ๊ณผ๊ฑฐ 5๋…„ ์ด๋‚ด์— ๋ณธ์ธ ๋˜๋Š” ์„ธ๋Œ€์›์ด ๋‹ค๋ฅธ ์ฃผํƒ์˜ ๋‹น์ฒจ์ž๊ฐ€ ๋œ ๊ฒฝ์šฐ์ž…๋‹ˆ๋‹ค.

Training Details

Training Data

dataset: Housing_Subscription_QA_Dataset

Training Hyperparameters

This model following Hyperparameters were used during training:

  • bf16 = True
  • learning_rate = 5.0e-5
  • num_train_epochs = 15
  • per_device_batch_size = 4
  • warmup_ratio = 0.2

Traning Prompt

 messages = [{"role": "system", "content": "You are a helpful AI assistant."},
    {"role": "user", "content": f"{example['question']}"},
    {"role": "assistant", "content": f"{example['answer']}"}]

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.2
Downloads last month
24
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for hecatonai/Housing-Subscription-QA-Phi-3.5

Adapter
(589)
this model

Dataset used to train hecatonai/Housing-Subscription-QA-Phi-3.5