|
--- |
|
license: apache-2.0 |
|
--- |
|
|
|
|
|
|
|
For Inference: |
|
|
|
- Download dependencies: |
|
```bash |
|
pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" |
|
pip install --no-deps trl peft accelerate bitsandbytes triton xformers |
|
``` |
|
|
|
|
|
- Infer part: |
|
|
|
```python |
|
|
|
from operator import index |
|
from unsloth import FastLanguageModel |
|
import torch |
|
|
|
max_seq_length = 2048 # Choose any! Llama 3 is up to 8k |
|
dtype = None |
|
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False. |
|
|
|
alpaca_prompt = """ حلل العاطفة متاع النص الموجود بين الأقواس المربعة، وقرّر إذا كان إيجابي ولا سلبي، ورجع الجواب كعلامة عاطفية متطابقة "إيجابي" ولا "سلبي". |
|
|
|
### Instruction: |
|
{} |
|
|
|
### Response: |
|
{}""" |
|
|
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name = "hedhoud12/Llama-3.2-1B-Instruct_Tunisian_sentiment_analysis", # your trained model |
|
max_seq_length = max_seq_length, |
|
dtype = dtype, |
|
load_in_4bit = load_in_4bit, |
|
) |
|
FastLanguageModel.for_inference(model) |
|
|
|
|
|
inputs = tokenizer( |
|
[ |
|
alpaca_prompt.format( |
|
"برا وليدي رابي يناجحك", # instruction |
|
"", # output - leave this blank for generation! |
|
) |
|
], return_tensors = "pt").to("cuda") |
|
|
|
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True) |
|
tokenizer.batch_decode(outputs)[0].split("### Response:")[1].strip() |
|
``` |
|
|
|
- The result will be like : |
|
```bash |
|
==((====))== Unsloth 2024.9.post4: Fast Llama patching. Transformers = 4.44.2. |
|
\\ /| GPU: Tesla T4. Max memory: 14.748 GB. Platform = Linux. |
|
O^O/ \_/ \ Pytorch: 2.4.1+cu121. CUDA = 7.5. CUDA Toolkit = 12.1. |
|
\ / Bfloat16 = FALSE. FA [Xformers = 0.0.28.post1. FA2 = False] |
|
"-____-" Free Apache license: http://github.com/unslothai/unsloth |
|
Unsloth: Fast downloading is enabled - ignore downloading bars which are red colored! |
|
كلام إيجابي<|eot_id|> |
|
``` |