Add source files directly to repo
#1
by
helboukkouri
- opened
- config.json +7 -1
- configuration_character_bert.py +156 -0
- modeling_character_bert.py +1954 -0
- tokenization_character_bert.py +930 -0
- tokenizer_config.json +1 -1
config.json
CHANGED
@@ -1,7 +1,13 @@
|
|
1 |
{
|
|
|
2 |
"architectures": [
|
3 |
"CharacterBertForPreTraining"
|
4 |
],
|
|
|
|
|
|
|
|
|
|
|
5 |
"attention_probs_dropout_prob": 0.1,
|
6 |
"character_embeddings_dim": 16,
|
7 |
"cnn_activation": "relu",
|
@@ -52,4 +58,4 @@
|
|
52 |
"transformers_version": "4.7.0.dev0",
|
53 |
"type_vocab_size": 2,
|
54 |
"use_cache": true
|
55 |
-
}
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "helboukkouri/character-bert-medical",
|
3 |
"architectures": [
|
4 |
"CharacterBertForPreTraining"
|
5 |
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_character_bert.CharacterBertConfig",
|
8 |
+
"AutoModel": "modeling_character_bert.CharacterBertForPreTraining",
|
9 |
+
"AutoModelForMaskedLM": "modeling_character_bert.CharacterBertForMaskedLM"
|
10 |
+
},
|
11 |
"attention_probs_dropout_prob": 0.1,
|
12 |
"character_embeddings_dim": 16,
|
13 |
"cnn_activation": "relu",
|
|
|
58 |
"transformers_version": "4.7.0.dev0",
|
59 |
"type_vocab_size": 2,
|
60 |
"use_cache": true
|
61 |
+
}
|
configuration_character_bert.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright Hicham EL BOUKKOURI, Olivier FERRET, Thomas LAVERGNE, Hiroshi NOJI,
|
3 |
+
# Pierre ZWEIGENBAUM, Junichi TSUJII and The HuggingFace Inc. team.
|
4 |
+
# All rights reserved.
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
""" CharacterBERT model configuration"""
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.utils import logging
|
21 |
+
|
22 |
+
|
23 |
+
logger = logging.get_logger(__name__)
|
24 |
+
|
25 |
+
CHARACTER_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
26 |
+
"helboukkouri/character-bert": "https://huggingface.co/helboukkouri/character-bert/resolve/main/config.json",
|
27 |
+
"helboukkouri/character-bert-medical": "https://huggingface.co/helboukkouri/character-bert-medical/resolve/main/config.json",
|
28 |
+
# See all CharacterBERT models at https://huggingface.co/models?filter=character_bert
|
29 |
+
}
|
30 |
+
|
31 |
+
|
32 |
+
class CharacterBertConfig(PretrainedConfig):
|
33 |
+
r"""
|
34 |
+
This is the configuration class to store the configuration of a [`CharacterBertModel`]. It is
|
35 |
+
used to instantiate an CharacterBERT model according to the specified arguments, defining the model architecture.
|
36 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the CharacterBERT
|
37 |
+
[helboukkouri/character-bert](https://huggingface.co/helboukkouri/character-bert) architecture.
|
38 |
+
|
39 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model
|
40 |
+
outputs. Read the documentation from [`PretrainedConfig`] for more information.
|
41 |
+
|
42 |
+
|
43 |
+
Args:
|
44 |
+
character_embeddings_dim (`int`, *optional*, defaults to `16`):
|
45 |
+
The size of the character embeddings.
|
46 |
+
cnn_activation (`str`, *optional*, defaults to `"relu"`):
|
47 |
+
The activation function to apply to the cnn representations.
|
48 |
+
cnn_filters (:
|
49 |
+
obj:*list(list(int))*, *optional*, defaults to `[[1, 32], [2, 32], [3, 64], [4, 128], [5, 256], [6, 512], [7, 1024]]`): The list of CNN filters to use in the CharacterCNN module.
|
50 |
+
num_highway_layers (`int`, *optional*, defaults to `2`):
|
51 |
+
The number of Highway layers to apply to the CNNs output.
|
52 |
+
max_word_length (`int`, *optional*, defaults to `50`):
|
53 |
+
The maximum token length in characters (actually, in bytes as any non-ascii characters will be converted to
|
54 |
+
a sequence of utf-8 bytes).
|
55 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
56 |
+
Dimensionality of the encoder layers and the pooler layer.
|
57 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
58 |
+
Number of hidden layers in the Transformer encoder.
|
59 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
60 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
61 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
62 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
63 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
64 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string,
|
65 |
+
`"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` are supported.
|
66 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
67 |
+
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
|
68 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
69 |
+
The dropout ratio for the attention probabilities.
|
70 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
71 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
72 |
+
just in case (e.g., 512 or 1024 or 2048).
|
73 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
74 |
+
The vocabulary size of the `token_type_ids` passed when calling
|
75 |
+
[`CharacterBertModel`] or [`TFCharacterBertModel`].
|
76 |
+
mlm_vocab_size (`int`, *optional*, defaults to 100000):
|
77 |
+
Size of the output vocabulary for MLM.
|
78 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
79 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
80 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
81 |
+
The epsilon used by the layer normalization layers.
|
82 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
83 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
84 |
+
relevant if `config.is_decoder=True`.
|
85 |
+
|
86 |
+
Example:
|
87 |
+
|
88 |
+
```python
|
89 |
+
|
90 |
+
```
|
91 |
+
|
92 |
+
>>> from transformers import CharacterBertModel, CharacterBertConfig
|
93 |
+
|
94 |
+
>>> # Initializing a CharacterBERT helboukkouri/character-bert style configuration
|
95 |
+
>>> configuration = CharacterBertConfig()
|
96 |
+
|
97 |
+
>>> # Initializing a model from the helboukkouri/character-bert style configuration
|
98 |
+
>>> model = CharacterBertModel(configuration)
|
99 |
+
|
100 |
+
>>> # Accessing the model configuration
|
101 |
+
>>> configuration = model.config
|
102 |
+
"""
|
103 |
+
model_type = "character_bert"
|
104 |
+
|
105 |
+
def __init__(
|
106 |
+
self,
|
107 |
+
character_embeddings_dim=16,
|
108 |
+
cnn_activation="relu",
|
109 |
+
cnn_filters=None,
|
110 |
+
num_highway_layers=2,
|
111 |
+
max_word_length=50,
|
112 |
+
hidden_size=768,
|
113 |
+
num_hidden_layers=12,
|
114 |
+
num_attention_heads=12,
|
115 |
+
intermediate_size=3072,
|
116 |
+
hidden_act="gelu",
|
117 |
+
hidden_dropout_prob=0.1,
|
118 |
+
attention_probs_dropout_prob=0.1,
|
119 |
+
max_position_embeddings=512,
|
120 |
+
type_vocab_size=2,
|
121 |
+
mlm_vocab_size=100000,
|
122 |
+
initializer_range=0.02,
|
123 |
+
layer_norm_eps=1e-12,
|
124 |
+
is_encoder_decoder=False,
|
125 |
+
use_cache=True,
|
126 |
+
**kwargs
|
127 |
+
):
|
128 |
+
tie_word_embeddings = kwargs.pop("tie_word_embeddings", False)
|
129 |
+
if tie_word_embeddings:
|
130 |
+
raise ValueError(
|
131 |
+
"Cannot tie word embeddings in CharacterBERT. Please set " "`config.tie_word_embeddings=False`."
|
132 |
+
)
|
133 |
+
super().__init__(
|
134 |
+
type_vocab_size=type_vocab_size,
|
135 |
+
layer_norm_eps=layer_norm_eps,
|
136 |
+
use_cache=use_cache,
|
137 |
+
tie_word_embeddings=tie_word_embeddings,
|
138 |
+
**kwargs,
|
139 |
+
)
|
140 |
+
if cnn_filters is None:
|
141 |
+
cnn_filters = [[1, 32], [2, 32], [3, 64], [4, 128], [5, 256], [6, 512], [7, 1024]]
|
142 |
+
self.character_embeddings_dim = character_embeddings_dim
|
143 |
+
self.cnn_activation = cnn_activation
|
144 |
+
self.cnn_filters = cnn_filters
|
145 |
+
self.num_highway_layers = num_highway_layers
|
146 |
+
self.max_word_length = max_word_length
|
147 |
+
self.hidden_size = hidden_size
|
148 |
+
self.num_hidden_layers = num_hidden_layers
|
149 |
+
self.num_attention_heads = num_attention_heads
|
150 |
+
self.intermediate_size = intermediate_size
|
151 |
+
self.mlm_vocab_size = mlm_vocab_size
|
152 |
+
self.hidden_act = hidden_act
|
153 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
154 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
155 |
+
self.max_position_embeddings = max_position_embeddings
|
156 |
+
self.initializer_range = initializer_range
|
modeling_character_bert.py
ADDED
@@ -0,0 +1,1954 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright Hicham EL BOUKKOURI, Olivier FERRET, Thomas LAVERGNE, Hiroshi NOJI,
|
3 |
+
# Pierre ZWEIGENBAUM, Junichi TSUJII, The HuggingFace Inc. and AllenNLP teams.
|
4 |
+
# All rights reserved.
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
"""
|
18 |
+
PyTorch CharacterBERT model: this is a variant of BERT that uses the CharacterCNN module from ELMo instead of a
|
19 |
+
WordPiece embedding matrix. See: “CharacterBERT: Reconciling ELMo and BERT for Word-Level Open-Vocabulary
|
20 |
+
Representations From Characters“ https://www.aclweb.org/anthology/2020.coling-main.609/
|
21 |
+
"""
|
22 |
+
|
23 |
+
import math
|
24 |
+
import warnings
|
25 |
+
from dataclasses import dataclass
|
26 |
+
from typing import Callable, Optional, Tuple
|
27 |
+
|
28 |
+
import torch
|
29 |
+
import torch.utils.checkpoint
|
30 |
+
from torch import nn
|
31 |
+
from torch.nn import CrossEntropyLoss, MSELoss
|
32 |
+
|
33 |
+
from transformers.activations import ACT2FN
|
34 |
+
from transformers.file_utils import (
|
35 |
+
ModelOutput,
|
36 |
+
add_code_sample_docstrings,
|
37 |
+
add_start_docstrings,
|
38 |
+
add_start_docstrings_to_model_forward,
|
39 |
+
replace_return_docstrings,
|
40 |
+
)
|
41 |
+
from transformers.modeling_outputs import (
|
42 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
43 |
+
BaseModelOutputWithPoolingAndCrossAttentions,
|
44 |
+
CausalLMOutputWithCrossAttentions,
|
45 |
+
MaskedLMOutput,
|
46 |
+
MultipleChoiceModelOutput,
|
47 |
+
NextSentencePredictorOutput,
|
48 |
+
QuestionAnsweringModelOutput,
|
49 |
+
SequenceClassifierOutput,
|
50 |
+
TokenClassifierOutput,
|
51 |
+
)
|
52 |
+
from transformers.modeling_utils import (
|
53 |
+
PreTrainedModel,
|
54 |
+
apply_chunking_to_forward,
|
55 |
+
find_pruneable_heads_and_indices,
|
56 |
+
prune_linear_layer,
|
57 |
+
)
|
58 |
+
from transformers.utils import logging
|
59 |
+
from .configuration_character_bert import CharacterBertConfig
|
60 |
+
from .tokenization_character_bert import CharacterMapper
|
61 |
+
|
62 |
+
|
63 |
+
logger = logging.get_logger(__name__)
|
64 |
+
|
65 |
+
_CHECKPOINT_FOR_DOC = "helboukkouri/character-bert"
|
66 |
+
_CONFIG_FOR_DOC = "CharacterBertConfig"
|
67 |
+
_TOKENIZER_FOR_DOC = "CharacterBertTokenizer"
|
68 |
+
|
69 |
+
CHARACTER_BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
70 |
+
"helboukkouri/character-bert",
|
71 |
+
"helboukkouri/character-bert-medical",
|
72 |
+
# See all CharacterBERT models at https://huggingface.co/models?filter=character_bert
|
73 |
+
]
|
74 |
+
|
75 |
+
|
76 |
+
# NOTE: the following class is taken from:
|
77 |
+
# https://github.com/allenai/allennlp/blob/main/allennlp/modules/highway.py
|
78 |
+
class Highway(torch.nn.Module):
|
79 |
+
"""
|
80 |
+
A `Highway layer <https://arxiv.org/abs/1505.00387)>`__ does a gated combination of a linear transformation and a
|
81 |
+
non-linear transformation of its input. :math:`y = g * x + (1 - g) * f(A(x))`, where :math:`A` is a linear
|
82 |
+
transformation, :math:`f` is an element-wise non-linearity, and :math:`g` is an element-wise gate, computed as
|
83 |
+
:math:`sigmoid(B(x))`.
|
84 |
+
|
85 |
+
This module will apply a fixed number of highway layers to its input, returning the final result.
|
86 |
+
|
87 |
+
# Parameters
|
88 |
+
|
89 |
+
input_dim : `int`, required The dimensionality of :math:`x`. We assume the input has shape `(batch_size, ...,
|
90 |
+
input_dim)`. num_layers : `int`, optional (default=`1`) The number of highway layers to apply to the input.
|
91 |
+
activation : `Callable[[torch.Tensor], torch.Tensor]`, optional (default=`torch.nn.functional.relu`) The
|
92 |
+
non-linearity to use in the highway layers.
|
93 |
+
"""
|
94 |
+
|
95 |
+
def __init__(
|
96 |
+
self,
|
97 |
+
input_dim: int,
|
98 |
+
num_layers: int = 1,
|
99 |
+
activation: Callable[[torch.Tensor], torch.Tensor] = torch.nn.functional.relu,
|
100 |
+
) -> None:
|
101 |
+
super().__init__()
|
102 |
+
self._input_dim = input_dim
|
103 |
+
self._layers = torch.nn.ModuleList([torch.nn.Linear(input_dim, input_dim * 2) for _ in range(num_layers)])
|
104 |
+
self._activation = activation
|
105 |
+
for layer in self._layers:
|
106 |
+
# We should bias the highway layer to just carry its input forward. We do that by
|
107 |
+
# setting the bias on `B(x)` to be positive, because that means `g` will be biased to
|
108 |
+
# be high, so we will carry the input forward. The bias on `B(x)` is the second half
|
109 |
+
# of the bias vector in each Linear layer.
|
110 |
+
layer.bias[input_dim:].data.fill_(1)
|
111 |
+
|
112 |
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
113 |
+
current_input = inputs
|
114 |
+
for layer in self._layers:
|
115 |
+
projected_input = layer(current_input)
|
116 |
+
linear_part = current_input
|
117 |
+
# NOTE: if you modify this, think about whether you should modify the initialization
|
118 |
+
# above, too.
|
119 |
+
nonlinear_part, gate = projected_input.chunk(2, dim=-1)
|
120 |
+
nonlinear_part = self._activation(nonlinear_part)
|
121 |
+
gate = torch.sigmoid(gate)
|
122 |
+
current_input = gate * linear_part + (1 - gate) * nonlinear_part
|
123 |
+
return current_input
|
124 |
+
|
125 |
+
|
126 |
+
# NOTE: The CharacterCnn was adapted from `_ElmoCharacterEncoder`:
|
127 |
+
# https://github.com/allenai/allennlp/blob/main/allennlp/modules/elmo.py#L254
|
128 |
+
class CharacterCnn(torch.nn.Module):
|
129 |
+
"""
|
130 |
+
Computes context insensitive token representation using multiple CNNs. This embedder has input character ids of
|
131 |
+
size (batch_size, sequence_length, 50) and returns (batch_size, sequence_length, hidden_size), where hidden_size is
|
132 |
+
typically 768.
|
133 |
+
"""
|
134 |
+
|
135 |
+
def __init__(self, config):
|
136 |
+
super().__init__()
|
137 |
+
self.character_embeddings_dim = config.character_embeddings_dim
|
138 |
+
self.cnn_activation = config.cnn_activation
|
139 |
+
self.cnn_filters = config.cnn_filters
|
140 |
+
self.num_highway_layers = config.num_highway_layers
|
141 |
+
self.max_word_length = config.max_word_length
|
142 |
+
self.hidden_size = config.hidden_size
|
143 |
+
# NOTE: this is the 256 possible utf-8 bytes + special slots for the
|
144 |
+
# [CLS]/[SEP]/[PAD]/[MASK] characters as well as beginning/end of
|
145 |
+
# word symbols and character padding for short words -> total of 263
|
146 |
+
self.character_vocab_size = 263
|
147 |
+
self._init_weights()
|
148 |
+
|
149 |
+
def get_output_dim(self):
|
150 |
+
return self.hidden_size
|
151 |
+
|
152 |
+
def _init_weights(self):
|
153 |
+
self._init_char_embedding()
|
154 |
+
self._init_cnn_weights()
|
155 |
+
self._init_highway()
|
156 |
+
self._init_projection()
|
157 |
+
|
158 |
+
def _init_char_embedding(self):
|
159 |
+
weights = torch.empty((self.character_vocab_size, self.character_embeddings_dim))
|
160 |
+
nn.init.normal_(weights)
|
161 |
+
weights[0].fill_(0.0) # token padding
|
162 |
+
weights[CharacterMapper.padding_character + 1].fill_(0.0) # character padding
|
163 |
+
self._char_embedding_weights = torch.nn.Parameter(torch.FloatTensor(weights), requires_grad=True)
|
164 |
+
|
165 |
+
def _init_cnn_weights(self):
|
166 |
+
convolutions = []
|
167 |
+
for i, (width, num) in enumerate(self.cnn_filters):
|
168 |
+
conv = torch.nn.Conv1d(
|
169 |
+
in_channels=self.character_embeddings_dim, out_channels=num, kernel_size=width, bias=True
|
170 |
+
)
|
171 |
+
conv.weight.requires_grad = True
|
172 |
+
conv.bias.requires_grad = True
|
173 |
+
convolutions.append(conv)
|
174 |
+
self.add_module(f"char_conv_{i}", conv)
|
175 |
+
self._convolutions = convolutions
|
176 |
+
|
177 |
+
def _init_highway(self):
|
178 |
+
# the highway layers have same dimensionality as the number of cnn filters
|
179 |
+
n_filters = sum(f[1] for f in self.cnn_filters)
|
180 |
+
self._highways = Highway(n_filters, self.num_highway_layers, activation=nn.functional.relu)
|
181 |
+
for k in range(self.num_highway_layers):
|
182 |
+
# The AllenNLP highway is one matrix multplication with concatenation of
|
183 |
+
# transform and carry weights.
|
184 |
+
self._highways._layers[k].weight.requires_grad = True
|
185 |
+
self._highways._layers[k].bias.requires_grad = True
|
186 |
+
|
187 |
+
def _init_projection(self):
|
188 |
+
n_filters = sum(f[1] for f in self.cnn_filters)
|
189 |
+
self._projection = torch.nn.Linear(n_filters, self.hidden_size, bias=True)
|
190 |
+
self._projection.weight.requires_grad = True
|
191 |
+
self._projection.bias.requires_grad = True
|
192 |
+
|
193 |
+
def forward(self, inputs: torch.Tensor) -> torch.Tensor:
|
194 |
+
"""
|
195 |
+
Compute context insensitive token embeddings from characters. # Parameters inputs : `torch.Tensor` Shape
|
196 |
+
`(batch_size, sequence_length, 50)` of character ids representing the current batch. # Returns output:
|
197 |
+
`torch.Tensor` Shape `(batch_size, sequence_length, embedding_dim)` tensor with context insensitive token
|
198 |
+
representations.
|
199 |
+
"""
|
200 |
+
|
201 |
+
# character embeddings
|
202 |
+
# (batch_size * sequence_length, max_word_length, embed_dim)
|
203 |
+
character_embedding = torch.nn.functional.embedding(
|
204 |
+
inputs.view(-1, self.max_word_length), self._char_embedding_weights
|
205 |
+
)
|
206 |
+
|
207 |
+
# CNN representations
|
208 |
+
if self.cnn_activation == "tanh":
|
209 |
+
activation = torch.tanh
|
210 |
+
elif self.cnn_activation == "relu":
|
211 |
+
activation = torch.nn.functional.relu
|
212 |
+
else:
|
213 |
+
raise Exception("ConfigurationError: Unknown activation")
|
214 |
+
|
215 |
+
# (batch_size * sequence_length, embed_dim, max_word_length)
|
216 |
+
character_embedding = torch.transpose(character_embedding, 1, 2)
|
217 |
+
convs = []
|
218 |
+
for i in range(len(self._convolutions)):
|
219 |
+
conv = getattr(self, "char_conv_{}".format(i))
|
220 |
+
convolved = conv(character_embedding)
|
221 |
+
# (batch_size * sequence_length, n_filters for this width)
|
222 |
+
convolved, _ = torch.max(convolved, dim=-1)
|
223 |
+
convolved = activation(convolved)
|
224 |
+
convs.append(convolved)
|
225 |
+
|
226 |
+
# (batch_size * sequence_length, n_filters)
|
227 |
+
token_embedding = torch.cat(convs, dim=-1)
|
228 |
+
|
229 |
+
# apply the highway layers (batch_size * sequence_length, n_filters)
|
230 |
+
token_embedding = self._highways(token_embedding)
|
231 |
+
|
232 |
+
# final projection (batch_size * sequence_length, embedding_dim)
|
233 |
+
token_embedding = self._projection(token_embedding)
|
234 |
+
|
235 |
+
# reshape to (batch_size, sequence_length, embedding_dim)
|
236 |
+
batch_size, sequence_length, _ = inputs.size()
|
237 |
+
output = token_embedding.view(batch_size, sequence_length, -1)
|
238 |
+
|
239 |
+
return output
|
240 |
+
|
241 |
+
|
242 |
+
class CharacterBertEmbeddings(nn.Module):
|
243 |
+
"""Construct the embeddings from word, position and token_type embeddings."""
|
244 |
+
|
245 |
+
def __init__(self, config):
|
246 |
+
super().__init__()
|
247 |
+
self.word_embeddings = CharacterCnn(config)
|
248 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
249 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
250 |
+
|
251 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
252 |
+
# any TensorFlow checkpoint file
|
253 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
254 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
255 |
+
|
256 |
+
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
|
257 |
+
self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)))
|
258 |
+
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
|
259 |
+
|
260 |
+
def forward(
|
261 |
+
self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
|
262 |
+
):
|
263 |
+
if input_ids is not None:
|
264 |
+
input_shape = input_ids[:, :, 0].size()
|
265 |
+
else:
|
266 |
+
input_shape = inputs_embeds.size()[:-1]
|
267 |
+
|
268 |
+
seq_length = input_shape[1]
|
269 |
+
|
270 |
+
if position_ids is None:
|
271 |
+
position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
|
272 |
+
|
273 |
+
if token_type_ids is None:
|
274 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
|
275 |
+
|
276 |
+
if inputs_embeds is None:
|
277 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
278 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
279 |
+
|
280 |
+
embeddings = inputs_embeds + token_type_embeddings
|
281 |
+
if self.position_embedding_type == "absolute":
|
282 |
+
position_embeddings = self.position_embeddings(position_ids)
|
283 |
+
embeddings += position_embeddings
|
284 |
+
embeddings = self.LayerNorm(embeddings)
|
285 |
+
embeddings = self.dropout(embeddings)
|
286 |
+
return embeddings
|
287 |
+
|
288 |
+
|
289 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->CharacterBert
|
290 |
+
class CharacterBertSelfAttention(nn.Module):
|
291 |
+
def __init__(self, config, position_embedding_type=None):
|
292 |
+
super().__init__()
|
293 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
294 |
+
raise ValueError(
|
295 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
296 |
+
f"heads ({config.num_attention_heads})"
|
297 |
+
)
|
298 |
+
|
299 |
+
self.num_attention_heads = config.num_attention_heads
|
300 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
301 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
302 |
+
|
303 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
304 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
305 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
306 |
+
|
307 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
308 |
+
self.position_embedding_type = position_embedding_type or getattr(
|
309 |
+
config, "position_embedding_type", "absolute"
|
310 |
+
)
|
311 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
312 |
+
self.max_position_embeddings = config.max_position_embeddings
|
313 |
+
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
|
314 |
+
|
315 |
+
self.is_decoder = config.is_decoder
|
316 |
+
|
317 |
+
def transpose_for_scores(self, x):
|
318 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
319 |
+
x = x.view(*new_x_shape)
|
320 |
+
return x.permute(0, 2, 1, 3)
|
321 |
+
|
322 |
+
def forward(
|
323 |
+
self,
|
324 |
+
hidden_states,
|
325 |
+
attention_mask=None,
|
326 |
+
head_mask=None,
|
327 |
+
encoder_hidden_states=None,
|
328 |
+
encoder_attention_mask=None,
|
329 |
+
past_key_value=None,
|
330 |
+
output_attentions=False,
|
331 |
+
):
|
332 |
+
mixed_query_layer = self.query(hidden_states)
|
333 |
+
|
334 |
+
# If this is instantiated as a cross-attention module, the keys
|
335 |
+
# and values come from an encoder; the attention mask needs to be
|
336 |
+
# such that the encoder's padding tokens are not attended to.
|
337 |
+
is_cross_attention = encoder_hidden_states is not None
|
338 |
+
|
339 |
+
if is_cross_attention and past_key_value is not None:
|
340 |
+
# reuse k,v, cross_attentions
|
341 |
+
key_layer = past_key_value[0]
|
342 |
+
value_layer = past_key_value[1]
|
343 |
+
attention_mask = encoder_attention_mask
|
344 |
+
elif is_cross_attention:
|
345 |
+
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
|
346 |
+
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
|
347 |
+
attention_mask = encoder_attention_mask
|
348 |
+
elif past_key_value is not None:
|
349 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
350 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
351 |
+
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
|
352 |
+
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
|
353 |
+
else:
|
354 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
355 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
356 |
+
|
357 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
358 |
+
|
359 |
+
if self.is_decoder:
|
360 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
361 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
362 |
+
# key/value_states (first "if" case)
|
363 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
364 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
365 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
366 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
367 |
+
past_key_value = (key_layer, value_layer)
|
368 |
+
|
369 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
370 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
371 |
+
|
372 |
+
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
|
373 |
+
seq_length = hidden_states.size()[1]
|
374 |
+
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
|
375 |
+
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
|
376 |
+
distance = position_ids_l - position_ids_r
|
377 |
+
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
|
378 |
+
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
|
379 |
+
|
380 |
+
if self.position_embedding_type == "relative_key":
|
381 |
+
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
382 |
+
attention_scores = attention_scores + relative_position_scores
|
383 |
+
elif self.position_embedding_type == "relative_key_query":
|
384 |
+
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
|
385 |
+
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
|
386 |
+
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
|
387 |
+
|
388 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
389 |
+
if attention_mask is not None:
|
390 |
+
# Apply the attention mask is (precomputed for all layers in CharacterBertModel forward() function)
|
391 |
+
attention_scores = attention_scores + attention_mask
|
392 |
+
|
393 |
+
# Normalize the attention scores to probabilities.
|
394 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
395 |
+
|
396 |
+
# This is actually dropping out entire tokens to attend to, which might
|
397 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
398 |
+
attention_probs = self.dropout(attention_probs)
|
399 |
+
|
400 |
+
# Mask heads if we want to
|
401 |
+
if head_mask is not None:
|
402 |
+
attention_probs = attention_probs * head_mask
|
403 |
+
|
404 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
405 |
+
|
406 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
407 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
408 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
409 |
+
|
410 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
411 |
+
|
412 |
+
if self.is_decoder:
|
413 |
+
outputs = outputs + (past_key_value,)
|
414 |
+
return outputs
|
415 |
+
|
416 |
+
|
417 |
+
# Copied from transformers.models.bert.modeling_bert.BertSelfOutput with Bert->CharacterBert
|
418 |
+
class CharacterBertSelfOutput(nn.Module):
|
419 |
+
def __init__(self, config):
|
420 |
+
super().__init__()
|
421 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
422 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
423 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
424 |
+
|
425 |
+
def forward(self, hidden_states, input_tensor):
|
426 |
+
hidden_states = self.dense(hidden_states)
|
427 |
+
hidden_states = self.dropout(hidden_states)
|
428 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
429 |
+
return hidden_states
|
430 |
+
|
431 |
+
|
432 |
+
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->CharacterBert
|
433 |
+
class CharacterBertAttention(nn.Module):
|
434 |
+
def __init__(self, config, position_embedding_type=None):
|
435 |
+
super().__init__()
|
436 |
+
self.self = CharacterBertSelfAttention(config, position_embedding_type=position_embedding_type)
|
437 |
+
self.output = CharacterBertSelfOutput(config)
|
438 |
+
self.pruned_heads = set()
|
439 |
+
|
440 |
+
def prune_heads(self, heads):
|
441 |
+
if len(heads) == 0:
|
442 |
+
return
|
443 |
+
heads, index = find_pruneable_heads_and_indices(
|
444 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
445 |
+
)
|
446 |
+
|
447 |
+
# Prune linear layers
|
448 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
449 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
450 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
451 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
452 |
+
|
453 |
+
# Update hyper params and store pruned heads
|
454 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
455 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
456 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
457 |
+
|
458 |
+
def forward(
|
459 |
+
self,
|
460 |
+
hidden_states,
|
461 |
+
attention_mask=None,
|
462 |
+
head_mask=None,
|
463 |
+
encoder_hidden_states=None,
|
464 |
+
encoder_attention_mask=None,
|
465 |
+
past_key_value=None,
|
466 |
+
output_attentions=False,
|
467 |
+
):
|
468 |
+
self_outputs = self.self(
|
469 |
+
hidden_states,
|
470 |
+
attention_mask,
|
471 |
+
head_mask,
|
472 |
+
encoder_hidden_states,
|
473 |
+
encoder_attention_mask,
|
474 |
+
past_key_value,
|
475 |
+
output_attentions,
|
476 |
+
)
|
477 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
478 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
479 |
+
return outputs
|
480 |
+
|
481 |
+
|
482 |
+
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->CharacterBert
|
483 |
+
class CharacterBertIntermediate(nn.Module):
|
484 |
+
def __init__(self, config):
|
485 |
+
super().__init__()
|
486 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
487 |
+
if isinstance(config.hidden_act, str):
|
488 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
489 |
+
else:
|
490 |
+
self.intermediate_act_fn = config.hidden_act
|
491 |
+
|
492 |
+
def forward(self, hidden_states):
|
493 |
+
hidden_states = self.dense(hidden_states)
|
494 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
495 |
+
return hidden_states
|
496 |
+
|
497 |
+
|
498 |
+
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->CharacterBert
|
499 |
+
class CharacterBertOutput(nn.Module):
|
500 |
+
def __init__(self, config):
|
501 |
+
super().__init__()
|
502 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
503 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
504 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
505 |
+
|
506 |
+
def forward(self, hidden_states, input_tensor):
|
507 |
+
hidden_states = self.dense(hidden_states)
|
508 |
+
hidden_states = self.dropout(hidden_states)
|
509 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
510 |
+
return hidden_states
|
511 |
+
|
512 |
+
|
513 |
+
# Copied from transformers.models.bert.modeling_bert.BertLayer with Bert->CharacterBert
|
514 |
+
class CharacterBertLayer(nn.Module):
|
515 |
+
def __init__(self, config):
|
516 |
+
super().__init__()
|
517 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
518 |
+
self.seq_len_dim = 1
|
519 |
+
self.attention = CharacterBertAttention(config)
|
520 |
+
self.is_decoder = config.is_decoder
|
521 |
+
self.add_cross_attention = config.add_cross_attention
|
522 |
+
if self.add_cross_attention:
|
523 |
+
if not self.is_decoder:
|
524 |
+
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
|
525 |
+
self.crossattention = CharacterBertAttention(config, position_embedding_type="absolute")
|
526 |
+
self.intermediate = CharacterBertIntermediate(config)
|
527 |
+
self.output = CharacterBertOutput(config)
|
528 |
+
|
529 |
+
def forward(
|
530 |
+
self,
|
531 |
+
hidden_states,
|
532 |
+
attention_mask=None,
|
533 |
+
head_mask=None,
|
534 |
+
encoder_hidden_states=None,
|
535 |
+
encoder_attention_mask=None,
|
536 |
+
past_key_value=None,
|
537 |
+
output_attentions=False,
|
538 |
+
):
|
539 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
540 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
541 |
+
self_attention_outputs = self.attention(
|
542 |
+
hidden_states,
|
543 |
+
attention_mask,
|
544 |
+
head_mask,
|
545 |
+
output_attentions=output_attentions,
|
546 |
+
past_key_value=self_attn_past_key_value,
|
547 |
+
)
|
548 |
+
attention_output = self_attention_outputs[0]
|
549 |
+
|
550 |
+
# if decoder, the last output is tuple of self-attn cache
|
551 |
+
if self.is_decoder:
|
552 |
+
outputs = self_attention_outputs[1:-1]
|
553 |
+
present_key_value = self_attention_outputs[-1]
|
554 |
+
else:
|
555 |
+
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
|
556 |
+
|
557 |
+
cross_attn_present_key_value = None
|
558 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
559 |
+
if not hasattr(self, "crossattention"):
|
560 |
+
raise ValueError(
|
561 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers by setting `config.add_cross_attention=True`"
|
562 |
+
)
|
563 |
+
|
564 |
+
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
|
565 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
566 |
+
cross_attention_outputs = self.crossattention(
|
567 |
+
attention_output,
|
568 |
+
attention_mask,
|
569 |
+
head_mask,
|
570 |
+
encoder_hidden_states,
|
571 |
+
encoder_attention_mask,
|
572 |
+
cross_attn_past_key_value,
|
573 |
+
output_attentions,
|
574 |
+
)
|
575 |
+
attention_output = cross_attention_outputs[0]
|
576 |
+
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
|
577 |
+
|
578 |
+
# add cross-attn cache to positions 3,4 of present_key_value tuple
|
579 |
+
cross_attn_present_key_value = cross_attention_outputs[-1]
|
580 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
581 |
+
|
582 |
+
layer_output = apply_chunking_to_forward(
|
583 |
+
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output
|
584 |
+
)
|
585 |
+
outputs = (layer_output,) + outputs
|
586 |
+
|
587 |
+
# if decoder, return the attn key/values as the last output
|
588 |
+
if self.is_decoder:
|
589 |
+
outputs = outputs + (present_key_value,)
|
590 |
+
|
591 |
+
return outputs
|
592 |
+
|
593 |
+
def feed_forward_chunk(self, attention_output):
|
594 |
+
intermediate_output = self.intermediate(attention_output)
|
595 |
+
layer_output = self.output(intermediate_output, attention_output)
|
596 |
+
return layer_output
|
597 |
+
|
598 |
+
|
599 |
+
# Copied from transformers.models.bert.modeling_bert.BertEncoder with Bert->CharacterBert
|
600 |
+
class CharacterBertEncoder(nn.Module):
|
601 |
+
def __init__(self, config):
|
602 |
+
super().__init__()
|
603 |
+
self.config = config
|
604 |
+
self.layer = nn.ModuleList([CharacterBertLayer(config) for _ in range(config.num_hidden_layers)])
|
605 |
+
self.gradient_checkpointing = False
|
606 |
+
|
607 |
+
def forward(
|
608 |
+
self,
|
609 |
+
hidden_states,
|
610 |
+
attention_mask=None,
|
611 |
+
head_mask=None,
|
612 |
+
encoder_hidden_states=None,
|
613 |
+
encoder_attention_mask=None,
|
614 |
+
past_key_values=None,
|
615 |
+
use_cache=None,
|
616 |
+
output_attentions=False,
|
617 |
+
output_hidden_states=False,
|
618 |
+
return_dict=True,
|
619 |
+
):
|
620 |
+
all_hidden_states = () if output_hidden_states else None
|
621 |
+
all_self_attentions = () if output_attentions else None
|
622 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
623 |
+
|
624 |
+
next_decoder_cache = () if use_cache else None
|
625 |
+
for i, layer_module in enumerate(self.layer):
|
626 |
+
if output_hidden_states:
|
627 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
628 |
+
|
629 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
630 |
+
past_key_value = past_key_values[i] if past_key_values is not None else None
|
631 |
+
|
632 |
+
if self.gradient_checkpointing and self.training:
|
633 |
+
|
634 |
+
if use_cache:
|
635 |
+
logger.warning(
|
636 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
637 |
+
)
|
638 |
+
use_cache = False
|
639 |
+
|
640 |
+
def create_custom_forward(module):
|
641 |
+
def custom_forward(*inputs):
|
642 |
+
return module(*inputs, past_key_value, output_attentions)
|
643 |
+
|
644 |
+
return custom_forward
|
645 |
+
|
646 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
647 |
+
create_custom_forward(layer_module),
|
648 |
+
hidden_states,
|
649 |
+
attention_mask,
|
650 |
+
layer_head_mask,
|
651 |
+
encoder_hidden_states,
|
652 |
+
encoder_attention_mask,
|
653 |
+
)
|
654 |
+
else:
|
655 |
+
layer_outputs = layer_module(
|
656 |
+
hidden_states,
|
657 |
+
attention_mask,
|
658 |
+
layer_head_mask,
|
659 |
+
encoder_hidden_states,
|
660 |
+
encoder_attention_mask,
|
661 |
+
past_key_value,
|
662 |
+
output_attentions,
|
663 |
+
)
|
664 |
+
|
665 |
+
hidden_states = layer_outputs[0]
|
666 |
+
if use_cache:
|
667 |
+
next_decoder_cache += (layer_outputs[-1],)
|
668 |
+
if output_attentions:
|
669 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
670 |
+
if self.config.add_cross_attention:
|
671 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
|
672 |
+
|
673 |
+
if output_hidden_states:
|
674 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
675 |
+
|
676 |
+
if not return_dict:
|
677 |
+
return tuple(
|
678 |
+
v
|
679 |
+
for v in [
|
680 |
+
hidden_states,
|
681 |
+
next_decoder_cache,
|
682 |
+
all_hidden_states,
|
683 |
+
all_self_attentions,
|
684 |
+
all_cross_attentions,
|
685 |
+
]
|
686 |
+
if v is not None
|
687 |
+
)
|
688 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
689 |
+
last_hidden_state=hidden_states,
|
690 |
+
past_key_values=next_decoder_cache,
|
691 |
+
hidden_states=all_hidden_states,
|
692 |
+
attentions=all_self_attentions,
|
693 |
+
cross_attentions=all_cross_attentions,
|
694 |
+
)
|
695 |
+
|
696 |
+
|
697 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->CharacterBert
|
698 |
+
class CharacterBertPooler(nn.Module):
|
699 |
+
def __init__(self, config):
|
700 |
+
super().__init__()
|
701 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
702 |
+
self.activation = nn.Tanh()
|
703 |
+
|
704 |
+
def forward(self, hidden_states):
|
705 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
706 |
+
# to the first token.
|
707 |
+
first_token_tensor = hidden_states[:, 0]
|
708 |
+
pooled_output = self.dense(first_token_tensor)
|
709 |
+
pooled_output = self.activation(pooled_output)
|
710 |
+
return pooled_output
|
711 |
+
|
712 |
+
|
713 |
+
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->CharacterBert
|
714 |
+
class CharacterBertPredictionHeadTransform(nn.Module):
|
715 |
+
def __init__(self, config):
|
716 |
+
super().__init__()
|
717 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
718 |
+
if isinstance(config.hidden_act, str):
|
719 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
720 |
+
else:
|
721 |
+
self.transform_act_fn = config.hidden_act
|
722 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
723 |
+
|
724 |
+
def forward(self, hidden_states):
|
725 |
+
hidden_states = self.dense(hidden_states)
|
726 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
727 |
+
hidden_states = self.LayerNorm(hidden_states)
|
728 |
+
return hidden_states
|
729 |
+
|
730 |
+
|
731 |
+
class CharacterBertLMPredictionHead(nn.Module):
|
732 |
+
def __init__(self, config):
|
733 |
+
super().__init__()
|
734 |
+
self.transform = CharacterBertPredictionHeadTransform(config)
|
735 |
+
|
736 |
+
# The output weights are the same as the input embeddings, but there is
|
737 |
+
# an output-only bias for each token.
|
738 |
+
self.decoder = nn.Linear(config.hidden_size, config.mlm_vocab_size, bias=False)
|
739 |
+
|
740 |
+
self.bias = nn.Parameter(torch.zeros(config.mlm_vocab_size))
|
741 |
+
|
742 |
+
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
|
743 |
+
self.decoder.bias = self.bias
|
744 |
+
|
745 |
+
def forward(self, hidden_states):
|
746 |
+
hidden_states = self.transform(hidden_states)
|
747 |
+
hidden_states = self.decoder(hidden_states)
|
748 |
+
return hidden_states
|
749 |
+
|
750 |
+
|
751 |
+
# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->CharacterBert
|
752 |
+
class CharacterBertOnlyMLMHead(nn.Module):
|
753 |
+
def __init__(self, config):
|
754 |
+
super().__init__()
|
755 |
+
self.predictions = CharacterBertLMPredictionHead(config)
|
756 |
+
|
757 |
+
def forward(self, sequence_output):
|
758 |
+
prediction_scores = self.predictions(sequence_output)
|
759 |
+
return prediction_scores
|
760 |
+
|
761 |
+
|
762 |
+
# Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->CharacterBert
|
763 |
+
class CharacterBertOnlyNSPHead(nn.Module):
|
764 |
+
def __init__(self, config):
|
765 |
+
super().__init__()
|
766 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
767 |
+
|
768 |
+
def forward(self, pooled_output):
|
769 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
770 |
+
return seq_relationship_score
|
771 |
+
|
772 |
+
|
773 |
+
# Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->CharacterBert
|
774 |
+
class CharacterBertPreTrainingHeads(nn.Module):
|
775 |
+
def __init__(self, config):
|
776 |
+
super().__init__()
|
777 |
+
self.predictions = CharacterBertLMPredictionHead(config)
|
778 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
779 |
+
|
780 |
+
def forward(self, sequence_output, pooled_output):
|
781 |
+
prediction_scores = self.predictions(sequence_output)
|
782 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
783 |
+
return prediction_scores, seq_relationship_score
|
784 |
+
|
785 |
+
|
786 |
+
class CharacterBertPreTrainedModel(PreTrainedModel):
|
787 |
+
"""
|
788 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
789 |
+
models.
|
790 |
+
"""
|
791 |
+
|
792 |
+
config_class = CharacterBertConfig
|
793 |
+
load_tf_weights = None
|
794 |
+
base_model_prefix = "character_bert"
|
795 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
796 |
+
|
797 |
+
def _init_weights(self, module):
|
798 |
+
"""Initialize the weights"""
|
799 |
+
if isinstance(module, CharacterCnn):
|
800 |
+
# We need to handle the case of these parameters since it is not an actual module
|
801 |
+
module._char_embedding_weights.data.normal_()
|
802 |
+
# token padding
|
803 |
+
module._char_embedding_weights.data[0].fill_(0.0)
|
804 |
+
# character padding
|
805 |
+
module._char_embedding_weights.data[CharacterMapper.padding_character + 1].fill_(0.0)
|
806 |
+
if isinstance(module, nn.Linear):
|
807 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
808 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
809 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
810 |
+
if module.bias is not None:
|
811 |
+
module.bias.data.zero_()
|
812 |
+
elif isinstance(module, nn.Embedding):
|
813 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
814 |
+
if module.padding_idx is not None:
|
815 |
+
module.weight.data[module.padding_idx].zero_()
|
816 |
+
elif isinstance(module, nn.LayerNorm):
|
817 |
+
module.bias.data.zero_()
|
818 |
+
module.weight.data.fill_(1.0)
|
819 |
+
|
820 |
+
|
821 |
+
@dataclass
|
822 |
+
# Copied from transformers.models.bert.modeling_bert.BertForPreTrainingOutput with Bert->CharacterBert
|
823 |
+
class CharacterBertForPreTrainingOutput(ModelOutput):
|
824 |
+
"""
|
825 |
+
Output type of [`CharacterBertForPreTraining`].
|
826 |
+
|
827 |
+
Args:
|
828 |
+
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
|
829 |
+
Total loss as the sum of the masked language modeling loss and the next sequence prediction
|
830 |
+
(classification) loss.
|
831 |
+
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
832 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
833 |
+
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
|
834 |
+
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
|
835 |
+
before SoftMax).
|
836 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
837 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
838 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
839 |
+
|
840 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
841 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
842 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
843 |
+
sequence_length)`.
|
844 |
+
|
845 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
846 |
+
heads.
|
847 |
+
"""
|
848 |
+
|
849 |
+
loss: Optional[torch.FloatTensor] = None
|
850 |
+
prediction_logits: torch.FloatTensor = None
|
851 |
+
seq_relationship_logits: torch.FloatTensor = None
|
852 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
853 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
854 |
+
|
855 |
+
|
856 |
+
CHARACTER_BERT_START_DOCSTRING = r"""
|
857 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
858 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
859 |
+
behavior.
|
860 |
+
|
861 |
+
Parameters:
|
862 |
+
config (:
|
863 |
+
class:*~transformers.CharacterBertConfig*): Model configuration class with all the parameters of the model.
|
864 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
865 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model
|
866 |
+
weights.
|
867 |
+
"""
|
868 |
+
|
869 |
+
CHARACTER_BERT_INPUTS_DOCSTRING = r"""
|
870 |
+
Args:
|
871 |
+
input_ids (`torch.LongTensor` of shape `{0}`):
|
872 |
+
Indices of input sequence tokens.
|
873 |
+
|
874 |
+
Indices can be obtained using [`CharacterBertTokenizer`]. See
|
875 |
+
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for
|
876 |
+
details.
|
877 |
+
|
878 |
+
[What are input IDs?](../glossary#input-ids)
|
879 |
+
attention_mask (`torch.FloatTensor` of shape `{1}`, *optional*):
|
880 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
881 |
+
|
882 |
+
- 1 for tokens that are **not masked**,
|
883 |
+
- 0 for tokens that are **masked**.
|
884 |
+
|
885 |
+
[What are attention masks?](../glossary#attention-mask)
|
886 |
+
token_type_ids (`torch.LongTensor` of shape `{1}`, *optional*):
|
887 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`:
|
888 |
+
|
889 |
+
- 0 corresponds to a *sentence A* token,
|
890 |
+
- 1 corresponds to a *sentence B* token.
|
891 |
+
|
892 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
893 |
+
position_ids (`torch.LongTensor` of shape `{1}`, *optional*):
|
894 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, config.max_position_embeddings - 1]`.
|
895 |
+
|
896 |
+
[What are position IDs?](../glossary#position-ids)
|
897 |
+
head_mask (:
|
898 |
+
obj:*torch.FloatTensor* of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask
|
899 |
+
to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
900 |
+
|
901 |
+
- 1 indicates the head is **not masked**,
|
902 |
+
- 0 indicates the head is **masked**.
|
903 |
+
|
904 |
+
inputs_embeds (:
|
905 |
+
obj:*torch.FloatTensor* of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
906 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
907 |
+
This is useful if you want more control over how to convert *input_ids* indices into associated vectors
|
908 |
+
than the model's internal embedding lookup matrix.
|
909 |
+
output_attentions (`bool`, *optional*):
|
910 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
911 |
+
tensors for more detail.
|
912 |
+
output_hidden_states (`bool`, *optional*):
|
913 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
914 |
+
more detail.
|
915 |
+
return_dict (`bool`, *optional*):
|
916 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
917 |
+
"""
|
918 |
+
|
919 |
+
|
920 |
+
@add_start_docstrings(
|
921 |
+
"The bare CharacterBERT Model transformer outputting raw hidden-states without any specific head on top.",
|
922 |
+
CHARACTER_BERT_START_DOCSTRING,
|
923 |
+
)
|
924 |
+
class CharacterBertModel(CharacterBertPreTrainedModel):
|
925 |
+
"""
|
926 |
+
|
927 |
+
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
|
928 |
+
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
|
929 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
|
930 |
+
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
931 |
+
|
932 |
+
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration
|
933 |
+
set to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder`
|
934 |
+
argument and `add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an
|
935 |
+
input to the forward pass.
|
936 |
+
"""
|
937 |
+
|
938 |
+
def __init__(self, config, add_pooling_layer=True):
|
939 |
+
super().__init__(config)
|
940 |
+
self.config = config
|
941 |
+
|
942 |
+
self.embeddings = CharacterBertEmbeddings(config)
|
943 |
+
self.encoder = CharacterBertEncoder(config)
|
944 |
+
|
945 |
+
self.pooler = CharacterBertPooler(config) if add_pooling_layer else None
|
946 |
+
|
947 |
+
self.init_weights()
|
948 |
+
|
949 |
+
def get_input_embeddings(self):
|
950 |
+
return self.embeddings.word_embeddings
|
951 |
+
|
952 |
+
def set_input_embeddings(self, value):
|
953 |
+
self.embeddings.word_embeddings = value
|
954 |
+
|
955 |
+
def resize_token_embeddings(self, *args, **kwargs):
|
956 |
+
raise NotImplementedError("Cannot resize CharacterBERT's token embeddings.")
|
957 |
+
|
958 |
+
def _prune_heads(self, heads_to_prune):
|
959 |
+
"""
|
960 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
961 |
+
class PreTrainedModel
|
962 |
+
"""
|
963 |
+
for layer, heads in heads_to_prune.items():
|
964 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
965 |
+
|
966 |
+
@add_start_docstrings_to_model_forward(
|
967 |
+
CHARACTER_BERT_INPUTS_DOCSTRING.format(
|
968 |
+
"(batch_size, sequence_length, maximum_token_length)", "(batch_size, sequence_length)"
|
969 |
+
)
|
970 |
+
)
|
971 |
+
@add_code_sample_docstrings(
|
972 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
973 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
974 |
+
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
|
975 |
+
config_class=_CONFIG_FOR_DOC,
|
976 |
+
)
|
977 |
+
def forward(
|
978 |
+
self,
|
979 |
+
input_ids=None,
|
980 |
+
attention_mask=None,
|
981 |
+
token_type_ids=None,
|
982 |
+
position_ids=None,
|
983 |
+
head_mask=None,
|
984 |
+
inputs_embeds=None,
|
985 |
+
encoder_hidden_states=None,
|
986 |
+
encoder_attention_mask=None,
|
987 |
+
past_key_values=None,
|
988 |
+
use_cache=None,
|
989 |
+
output_attentions=None,
|
990 |
+
output_hidden_states=None,
|
991 |
+
return_dict=None,
|
992 |
+
):
|
993 |
+
r"""
|
994 |
+
encoder_hidden_states (:
|
995 |
+
obj:*torch.FloatTensor* of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence
|
996 |
+
of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model
|
997 |
+
is configured as a decoder.
|
998 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
999 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1000 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
1001 |
+
|
1002 |
+
- 1 for tokens that are **not masked**,
|
1003 |
+
- 0 for tokens that are **masked**.
|
1004 |
+
past_key_values (:
|
1005 |
+
obj:*tuple(tuple(torch.FloatTensor))* of length `config.n_layers` with each tuple having 4 tensors of
|
1006 |
+
shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key
|
1007 |
+
and value hidden states of the attention blocks. Can be used to speed up decoding. If
|
1008 |
+
`past_key_values` are used, the user can optionally input only the last `decoder_input_ids`
|
1009 |
+
(those that don't have their past key value states given to this model) of shape `(batch_size, 1)`
|
1010 |
+
instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1011 |
+
use_cache (`bool`, *optional*):
|
1012 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up
|
1013 |
+
decoding (see `past_key_values`).
|
1014 |
+
"""
|
1015 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1016 |
+
output_hidden_states = (
|
1017 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1018 |
+
)
|
1019 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1020 |
+
|
1021 |
+
if self.config.is_decoder:
|
1022 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1023 |
+
else:
|
1024 |
+
use_cache = False
|
1025 |
+
|
1026 |
+
if input_ids is not None and inputs_embeds is not None:
|
1027 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
1028 |
+
elif input_ids is not None:
|
1029 |
+
input_shape = input_ids.size()[:-1]
|
1030 |
+
batch_size, seq_length = input_shape
|
1031 |
+
elif inputs_embeds is not None:
|
1032 |
+
input_shape = inputs_embeds.size()[:-1]
|
1033 |
+
batch_size, seq_length = input_shape
|
1034 |
+
else:
|
1035 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1036 |
+
|
1037 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1038 |
+
|
1039 |
+
# past_key_values_length
|
1040 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
1041 |
+
|
1042 |
+
if attention_mask is None:
|
1043 |
+
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
|
1044 |
+
if token_type_ids is None:
|
1045 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
1046 |
+
|
1047 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
1048 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
1049 |
+
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
|
1050 |
+
|
1051 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
1052 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
1053 |
+
if self.config.is_decoder and encoder_hidden_states is not None:
|
1054 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
1055 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
1056 |
+
if encoder_attention_mask is None:
|
1057 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
1058 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
1059 |
+
else:
|
1060 |
+
encoder_extended_attention_mask = None
|
1061 |
+
|
1062 |
+
# Prepare head mask if needed
|
1063 |
+
# 1.0 in head_mask indicate we keep the head
|
1064 |
+
# attention_probs has shape bsz x n_heads x N x N
|
1065 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
1066 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
1067 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
1068 |
+
|
1069 |
+
embedding_output = self.embeddings(
|
1070 |
+
input_ids=input_ids,
|
1071 |
+
position_ids=position_ids,
|
1072 |
+
token_type_ids=token_type_ids,
|
1073 |
+
inputs_embeds=inputs_embeds,
|
1074 |
+
past_key_values_length=past_key_values_length,
|
1075 |
+
)
|
1076 |
+
encoder_outputs = self.encoder(
|
1077 |
+
embedding_output,
|
1078 |
+
attention_mask=extended_attention_mask,
|
1079 |
+
head_mask=head_mask,
|
1080 |
+
encoder_hidden_states=encoder_hidden_states,
|
1081 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
1082 |
+
past_key_values=past_key_values,
|
1083 |
+
use_cache=use_cache,
|
1084 |
+
output_attentions=output_attentions,
|
1085 |
+
output_hidden_states=output_hidden_states,
|
1086 |
+
return_dict=return_dict,
|
1087 |
+
)
|
1088 |
+
sequence_output = encoder_outputs[0]
|
1089 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
1090 |
+
|
1091 |
+
if not return_dict:
|
1092 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
1093 |
+
|
1094 |
+
return BaseModelOutputWithPoolingAndCrossAttentions(
|
1095 |
+
last_hidden_state=sequence_output,
|
1096 |
+
pooler_output=pooled_output,
|
1097 |
+
past_key_values=encoder_outputs.past_key_values,
|
1098 |
+
hidden_states=encoder_outputs.hidden_states,
|
1099 |
+
attentions=encoder_outputs.attentions,
|
1100 |
+
cross_attentions=encoder_outputs.cross_attentions,
|
1101 |
+
)
|
1102 |
+
|
1103 |
+
|
1104 |
+
@add_start_docstrings(
|
1105 |
+
"""
|
1106 |
+
CharacterBert Model with two heads on top as done during the pretraining: a `masked language modeling` head and a
|
1107 |
+
`next sentence prediction (classification)` head.
|
1108 |
+
""",
|
1109 |
+
CHARACTER_BERT_START_DOCSTRING,
|
1110 |
+
)
|
1111 |
+
class CharacterBertForPreTraining(CharacterBertPreTrainedModel):
|
1112 |
+
def __init__(self, config):
|
1113 |
+
super().__init__(config)
|
1114 |
+
|
1115 |
+
self.character_bert = CharacterBertModel(config)
|
1116 |
+
self.cls = CharacterBertPreTrainingHeads(config)
|
1117 |
+
|
1118 |
+
self.init_weights()
|
1119 |
+
|
1120 |
+
def get_output_embeddings(self):
|
1121 |
+
return self.cls.predictions.decoder
|
1122 |
+
|
1123 |
+
def set_output_embeddings(self, new_embeddings):
|
1124 |
+
self.cls.predictions.decoder = new_embeddings
|
1125 |
+
|
1126 |
+
@add_start_docstrings_to_model_forward(
|
1127 |
+
CHARACTER_BERT_INPUTS_DOCSTRING.format(
|
1128 |
+
"(batch_size, sequence_length, maximum_token_length)", "(batch_size, sequence_length)"
|
1129 |
+
)
|
1130 |
+
)
|
1131 |
+
@replace_return_docstrings(output_type=CharacterBertForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
|
1132 |
+
def forward(
|
1133 |
+
self,
|
1134 |
+
input_ids=None,
|
1135 |
+
attention_mask=None,
|
1136 |
+
token_type_ids=None,
|
1137 |
+
position_ids=None,
|
1138 |
+
head_mask=None,
|
1139 |
+
inputs_embeds=None,
|
1140 |
+
labels=None,
|
1141 |
+
next_sentence_label=None,
|
1142 |
+
output_attentions=None,
|
1143 |
+
output_hidden_states=None,
|
1144 |
+
return_dict=None,
|
1145 |
+
):
|
1146 |
+
r"""
|
1147 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1148 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.mlm_vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored
|
1149 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.mlm_vocab_size]`
|
1150 |
+
next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1151 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
|
1152 |
+
(see `input_ids` docstring) Indices should be in `[0, 1]`:
|
1153 |
+
|
1154 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
1155 |
+
- 1 indicates sequence B is a random sequence.
|
1156 |
+
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
|
1157 |
+
Used to hide legacy arguments that have been deprecated.
|
1158 |
+
|
1159 |
+
Returns:
|
1160 |
+
|
1161 |
+
Example:
|
1162 |
+
|
1163 |
+
```python
|
1164 |
+
>>> from transformers import CharacterBertTokenizer, CharacterBertForPreTraining >>> import torch
|
1165 |
+
|
1166 |
+
>>> tokenizer = CharacterBertTokenizer.from_pretrained('helboukkouri/character-bert') >>> model =
|
1167 |
+
CharacterBertForPreTraining.from_pretrained('helboukkouri/character-bert')
|
1168 |
+
|
1169 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs)
|
1170 |
+
|
1171 |
+
>>> prediction_logits = outputs.prediction_logits >>> seq_relationship_logits =
|
1172 |
+
outputs.seq_relationship_logits
|
1173 |
+
```
|
1174 |
+
"""
|
1175 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1176 |
+
|
1177 |
+
outputs = self.character_bert(
|
1178 |
+
input_ids,
|
1179 |
+
attention_mask=attention_mask,
|
1180 |
+
token_type_ids=token_type_ids,
|
1181 |
+
position_ids=position_ids,
|
1182 |
+
head_mask=head_mask,
|
1183 |
+
inputs_embeds=inputs_embeds,
|
1184 |
+
output_attentions=output_attentions,
|
1185 |
+
output_hidden_states=output_hidden_states,
|
1186 |
+
return_dict=return_dict,
|
1187 |
+
)
|
1188 |
+
|
1189 |
+
sequence_output, pooled_output = outputs[:2]
|
1190 |
+
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
|
1191 |
+
|
1192 |
+
total_loss = None
|
1193 |
+
if labels is not None and next_sentence_label is not None:
|
1194 |
+
loss_fct = CrossEntropyLoss()
|
1195 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.mlm_vocab_size), labels.view(-1))
|
1196 |
+
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
|
1197 |
+
total_loss = masked_lm_loss + next_sentence_loss
|
1198 |
+
|
1199 |
+
if not return_dict:
|
1200 |
+
output = (prediction_scores, seq_relationship_score) + outputs[2:]
|
1201 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1202 |
+
|
1203 |
+
return CharacterBertForPreTrainingOutput(
|
1204 |
+
loss=total_loss,
|
1205 |
+
prediction_logits=prediction_scores,
|
1206 |
+
seq_relationship_logits=seq_relationship_score,
|
1207 |
+
hidden_states=outputs.hidden_states,
|
1208 |
+
attentions=outputs.attentions,
|
1209 |
+
)
|
1210 |
+
|
1211 |
+
|
1212 |
+
@add_start_docstrings(
|
1213 |
+
"""CharacterBert Model with a `language modeling` head on top for CLM fine-tuning.""",
|
1214 |
+
CHARACTER_BERT_START_DOCSTRING,
|
1215 |
+
)
|
1216 |
+
class CharacterBertLMHeadModel(CharacterBertPreTrainedModel):
|
1217 |
+
|
1218 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1219 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
1220 |
+
|
1221 |
+
def __init__(self, config):
|
1222 |
+
super().__init__(config)
|
1223 |
+
|
1224 |
+
if not config.is_decoder:
|
1225 |
+
logger.warning("If you want to use `CharacterBertLMHeadModel` as a standalone, add `is_decoder=True.`")
|
1226 |
+
|
1227 |
+
self.character_bert = CharacterBertModel(config, add_pooling_layer=False)
|
1228 |
+
self.cls = CharacterBertOnlyMLMHead(config)
|
1229 |
+
|
1230 |
+
self.init_weights()
|
1231 |
+
|
1232 |
+
def get_output_embeddings(self):
|
1233 |
+
return self.cls.predictions.decoder
|
1234 |
+
|
1235 |
+
def set_output_embeddings(self, new_embeddings):
|
1236 |
+
self.cls.predictions.decoder = new_embeddings
|
1237 |
+
|
1238 |
+
@add_start_docstrings_to_model_forward(
|
1239 |
+
CHARACTER_BERT_INPUTS_DOCSTRING.format(
|
1240 |
+
"(batch_size, sequence_length, maximum_token_length)", "(batch_size, sequence_length)"
|
1241 |
+
)
|
1242 |
+
)
|
1243 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
|
1244 |
+
def forward(
|
1245 |
+
self,
|
1246 |
+
input_ids=None,
|
1247 |
+
attention_mask=None,
|
1248 |
+
token_type_ids=None,
|
1249 |
+
position_ids=None,
|
1250 |
+
head_mask=None,
|
1251 |
+
inputs_embeds=None,
|
1252 |
+
encoder_hidden_states=None,
|
1253 |
+
encoder_attention_mask=None,
|
1254 |
+
labels=None,
|
1255 |
+
past_key_values=None,
|
1256 |
+
use_cache=None,
|
1257 |
+
output_attentions=None,
|
1258 |
+
output_hidden_states=None,
|
1259 |
+
return_dict=None,
|
1260 |
+
):
|
1261 |
+
r"""
|
1262 |
+
encoder_hidden_states (:
|
1263 |
+
obj:*torch.FloatTensor* of shape `(batch_size, sequence_length, hidden_size)`, *optional*): Sequence
|
1264 |
+
of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if the model
|
1265 |
+
is configured as a decoder.
|
1266 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1267 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
|
1268 |
+
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
1269 |
+
|
1270 |
+
- 1 for tokens that are **not masked**,
|
1271 |
+
- 0 for tokens that are **masked**.
|
1272 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1273 |
+
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
1274 |
+
`[-100, 0, ..., config.mlm_vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100`
|
1275 |
+
are ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.mlm_vocab_size]`
|
1276 |
+
past_key_values (:
|
1277 |
+
obj:*tuple(tuple(torch.FloatTensor))* of length `config.n_layers` with each tuple having 4 tensors of
|
1278 |
+
shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): Contains precomputed key
|
1279 |
+
and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1280 |
+
|
1281 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids`
|
1282 |
+
(those that don't have their past key value states given to this model) of shape `(batch_size, 1)`
|
1283 |
+
instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1284 |
+
use_cache (`bool`, *optional*):
|
1285 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up
|
1286 |
+
decoding (see `past_key_values`).
|
1287 |
+
|
1288 |
+
Returns:
|
1289 |
+
|
1290 |
+
Example:
|
1291 |
+
|
1292 |
+
```python
|
1293 |
+
>>> from transformers import CharacterBertTokenizer, CharacterBertLMHeadModel, CharacterBertConfig >>>
|
1294 |
+
import torch
|
1295 |
+
|
1296 |
+
>>> tokenizer = CharacterBertTokenizer.from_pretrained('helboukkouri/character-bert') >>> config =
|
1297 |
+
CharacterBertConfig.from_pretrained("helboukkouri/character-bert") >>> config.is_decoder = True >>> model =
|
1298 |
+
CharacterBertLMHeadModel.from_pretrained('helboukkouri/character-bert', config=config)
|
1299 |
+
|
1300 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") >>> outputs = model(**inputs)
|
1301 |
+
|
1302 |
+
>>> prediction_logits = outputs.logits
|
1303 |
+
```
|
1304 |
+
"""
|
1305 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1306 |
+
if labels is not None:
|
1307 |
+
use_cache = False
|
1308 |
+
|
1309 |
+
outputs = self.character_bert(
|
1310 |
+
input_ids,
|
1311 |
+
attention_mask=attention_mask,
|
1312 |
+
token_type_ids=token_type_ids,
|
1313 |
+
position_ids=position_ids,
|
1314 |
+
head_mask=head_mask,
|
1315 |
+
inputs_embeds=inputs_embeds,
|
1316 |
+
encoder_hidden_states=encoder_hidden_states,
|
1317 |
+
encoder_attention_mask=encoder_attention_mask,
|
1318 |
+
past_key_values=past_key_values,
|
1319 |
+
use_cache=use_cache,
|
1320 |
+
output_attentions=output_attentions,
|
1321 |
+
output_hidden_states=output_hidden_states,
|
1322 |
+
return_dict=return_dict,
|
1323 |
+
)
|
1324 |
+
|
1325 |
+
sequence_output = outputs[0]
|
1326 |
+
prediction_scores = self.cls(sequence_output)
|
1327 |
+
|
1328 |
+
lm_loss = None
|
1329 |
+
if labels is not None:
|
1330 |
+
# we are doing next-token prediction; shift prediction scores and input ids by one
|
1331 |
+
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
|
1332 |
+
labels = labels[:, 1:].contiguous()
|
1333 |
+
loss_fct = CrossEntropyLoss()
|
1334 |
+
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.mlm_vocab_size), labels.view(-1))
|
1335 |
+
|
1336 |
+
if not return_dict:
|
1337 |
+
output = (prediction_scores,) + outputs[2:]
|
1338 |
+
return ((lm_loss,) + output) if lm_loss is not None else output
|
1339 |
+
|
1340 |
+
return CausalLMOutputWithCrossAttentions(
|
1341 |
+
loss=lm_loss,
|
1342 |
+
logits=prediction_scores,
|
1343 |
+
past_key_values=outputs.past_key_values,
|
1344 |
+
hidden_states=outputs.hidden_states,
|
1345 |
+
attentions=outputs.attentions,
|
1346 |
+
cross_attentions=outputs.cross_attentions,
|
1347 |
+
)
|
1348 |
+
|
1349 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, **model_kwargs):
|
1350 |
+
input_shape = input_ids.shape
|
1351 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1352 |
+
if attention_mask is None:
|
1353 |
+
attention_mask = input_ids.new_ones(input_shape)
|
1354 |
+
|
1355 |
+
# cut decoder_input_ids if past is used
|
1356 |
+
if past is not None:
|
1357 |
+
input_ids = input_ids[:, -1:]
|
1358 |
+
|
1359 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past}
|
1360 |
+
|
1361 |
+
def _reorder_cache(self, past, beam_idx):
|
1362 |
+
reordered_past = ()
|
1363 |
+
for layer_past in past:
|
1364 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
1365 |
+
return reordered_past
|
1366 |
+
|
1367 |
+
|
1368 |
+
@add_start_docstrings(
|
1369 |
+
"""CharacterBert Model with a `language modeling` head on top.""", CHARACTER_BERT_START_DOCSTRING
|
1370 |
+
)
|
1371 |
+
class CharacterBertForMaskedLM(CharacterBertPreTrainedModel):
|
1372 |
+
|
1373 |
+
_keys_to_ignore_on_load_unexpected = [r"pooler"]
|
1374 |
+
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
1375 |
+
|
1376 |
+
def __init__(self, config):
|
1377 |
+
super().__init__(config)
|
1378 |
+
|
1379 |
+
if config.is_decoder:
|
1380 |
+
logger.warning(
|
1381 |
+
"If you want to use `CharacterBertForMaskedLM` make sure `config.is_decoder=False` for "
|
1382 |
+
"bi-directional self-attention."
|
1383 |
+
)
|
1384 |
+
self.character_bert = CharacterBertModel(config, add_pooling_layer=False)
|
1385 |
+
self.cls = CharacterBertOnlyMLMHead(config)
|
1386 |
+
|
1387 |
+
self.init_weights()
|
1388 |
+
|
1389 |
+
def get_output_embeddings(self):
|
1390 |
+
return self.cls.predictions.decoder
|
1391 |
+
|
1392 |
+
def set_output_embeddings(self, new_embeddings):
|
1393 |
+
self.cls.predictions.decoder = new_embeddings
|
1394 |
+
|
1395 |
+
@add_start_docstrings_to_model_forward(
|
1396 |
+
CHARACTER_BERT_INPUTS_DOCSTRING.format(
|
1397 |
+
"(batch_size, sequence_length, maximum_token_length)", "(batch_size, sequence_length)"
|
1398 |
+
)
|
1399 |
+
)
|
1400 |
+
@add_code_sample_docstrings(
|
1401 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
1402 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1403 |
+
output_type=MaskedLMOutput,
|
1404 |
+
config_class=_CONFIG_FOR_DOC,
|
1405 |
+
)
|
1406 |
+
def forward(
|
1407 |
+
self,
|
1408 |
+
input_ids=None,
|
1409 |
+
attention_mask=None,
|
1410 |
+
token_type_ids=None,
|
1411 |
+
position_ids=None,
|
1412 |
+
head_mask=None,
|
1413 |
+
inputs_embeds=None,
|
1414 |
+
encoder_hidden_states=None,
|
1415 |
+
encoder_attention_mask=None,
|
1416 |
+
labels=None,
|
1417 |
+
output_attentions=None,
|
1418 |
+
output_hidden_states=None,
|
1419 |
+
return_dict=None,
|
1420 |
+
):
|
1421 |
+
r"""
|
1422 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1423 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., config.mlm_vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored
|
1424 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.mlm_vocab_size]`
|
1425 |
+
"""
|
1426 |
+
|
1427 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1428 |
+
|
1429 |
+
outputs = self.character_bert(
|
1430 |
+
input_ids,
|
1431 |
+
attention_mask=attention_mask,
|
1432 |
+
token_type_ids=token_type_ids,
|
1433 |
+
position_ids=position_ids,
|
1434 |
+
head_mask=head_mask,
|
1435 |
+
inputs_embeds=inputs_embeds,
|
1436 |
+
encoder_hidden_states=encoder_hidden_states,
|
1437 |
+
encoder_attention_mask=encoder_attention_mask,
|
1438 |
+
output_attentions=output_attentions,
|
1439 |
+
output_hidden_states=output_hidden_states,
|
1440 |
+
return_dict=return_dict,
|
1441 |
+
)
|
1442 |
+
|
1443 |
+
sequence_output = outputs[0]
|
1444 |
+
prediction_scores = self.cls(sequence_output)
|
1445 |
+
|
1446 |
+
masked_lm_loss = None
|
1447 |
+
if labels is not None:
|
1448 |
+
loss_fct = CrossEntropyLoss() # -100 index = padding token
|
1449 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.mlm_vocab_size), labels.view(-1))
|
1450 |
+
|
1451 |
+
if not return_dict:
|
1452 |
+
output = (prediction_scores,) + outputs[2:]
|
1453 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1454 |
+
|
1455 |
+
return MaskedLMOutput(
|
1456 |
+
loss=masked_lm_loss,
|
1457 |
+
logits=prediction_scores,
|
1458 |
+
hidden_states=outputs.hidden_states,
|
1459 |
+
attentions=outputs.attentions,
|
1460 |
+
)
|
1461 |
+
|
1462 |
+
def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
|
1463 |
+
input_shape = input_ids.shape
|
1464 |
+
effective_batch_size = input_shape[0]
|
1465 |
+
|
1466 |
+
# add a dummy token
|
1467 |
+
assert self.config.pad_token_id is not None, "The PAD token should be defined for generation"
|
1468 |
+
attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
|
1469 |
+
dummy_token = torch.full(
|
1470 |
+
(effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
|
1471 |
+
)
|
1472 |
+
input_ids = torch.cat([input_ids, dummy_token], dim=1)
|
1473 |
+
|
1474 |
+
return {"input_ids": input_ids, "attention_mask": attention_mask}
|
1475 |
+
|
1476 |
+
|
1477 |
+
@add_start_docstrings(
|
1478 |
+
"""CharacterBert Model with a `next sentence prediction (classification)` head on top.""",
|
1479 |
+
CHARACTER_BERT_START_DOCSTRING,
|
1480 |
+
)
|
1481 |
+
class CharacterBertForNextSentencePrediction(CharacterBertPreTrainedModel):
|
1482 |
+
def __init__(self, config):
|
1483 |
+
super().__init__(config)
|
1484 |
+
|
1485 |
+
self.character_bert = CharacterBertModel(config)
|
1486 |
+
self.cls = CharacterBertOnlyNSPHead(config)
|
1487 |
+
|
1488 |
+
self.init_weights()
|
1489 |
+
|
1490 |
+
@add_start_docstrings_to_model_forward(
|
1491 |
+
CHARACTER_BERT_INPUTS_DOCSTRING.format(
|
1492 |
+
"(batch_size, sequence_length, maximum_token_length)", "(batch_size, sequence_length)"
|
1493 |
+
)
|
1494 |
+
)
|
1495 |
+
@replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
|
1496 |
+
def forward(
|
1497 |
+
self,
|
1498 |
+
input_ids=None,
|
1499 |
+
attention_mask=None,
|
1500 |
+
token_type_ids=None,
|
1501 |
+
position_ids=None,
|
1502 |
+
head_mask=None,
|
1503 |
+
inputs_embeds=None,
|
1504 |
+
labels=None,
|
1505 |
+
output_attentions=None,
|
1506 |
+
output_hidden_states=None,
|
1507 |
+
return_dict=None,
|
1508 |
+
**kwargs
|
1509 |
+
):
|
1510 |
+
r"""
|
1511 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1512 |
+
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
|
1513 |
+
(see `input_ids` docstring). Indices should be in `[0, 1]`:
|
1514 |
+
|
1515 |
+
- 0 indicates sequence B is a continuation of sequence A,
|
1516 |
+
- 1 indicates sequence B is a random sequence.
|
1517 |
+
|
1518 |
+
Returns:
|
1519 |
+
|
1520 |
+
Example:
|
1521 |
+
|
1522 |
+
```python
|
1523 |
+
>>> from transformers import CharacterBertTokenizer, CharacterBertForNextSentencePrediction >>> import
|
1524 |
+
torch
|
1525 |
+
|
1526 |
+
>>> tokenizer = CharacterBertTokenizer.from_pretrained('helboukkouri/character-bert') >>> model =
|
1527 |
+
CharacterBertForNextSentencePrediction.from_pretrained('helboukkouri/character-bert')
|
1528 |
+
|
1529 |
+
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
|
1530 |
+
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light." >>> encoding =
|
1531 |
+
tokenizer(prompt, next_sentence, return_tensors='pt')
|
1532 |
+
|
1533 |
+
>>> outputs = model(**encoding, labels=torch.LongTensor([1])) >>> logits = outputs.logits >>> assert
|
1534 |
+
logits[0, 0] < logits[0, 1] # next sentence was random
|
1535 |
+
```
|
1536 |
+
"""
|
1537 |
+
|
1538 |
+
if "next_sentence_label" in kwargs:
|
1539 |
+
warnings.warn(
|
1540 |
+
"The `next_sentence_label` argument is deprecated and will be removed in a future version, use `labels` instead.",
|
1541 |
+
FutureWarning,
|
1542 |
+
)
|
1543 |
+
labels = kwargs.pop("next_sentence_label")
|
1544 |
+
|
1545 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1546 |
+
|
1547 |
+
outputs = self.character_bert(
|
1548 |
+
input_ids,
|
1549 |
+
attention_mask=attention_mask,
|
1550 |
+
token_type_ids=token_type_ids,
|
1551 |
+
position_ids=position_ids,
|
1552 |
+
head_mask=head_mask,
|
1553 |
+
inputs_embeds=inputs_embeds,
|
1554 |
+
output_attentions=output_attentions,
|
1555 |
+
output_hidden_states=output_hidden_states,
|
1556 |
+
return_dict=return_dict,
|
1557 |
+
)
|
1558 |
+
|
1559 |
+
pooled_output = outputs[1]
|
1560 |
+
|
1561 |
+
seq_relationship_scores = self.cls(pooled_output)
|
1562 |
+
|
1563 |
+
next_sentence_loss = None
|
1564 |
+
if labels is not None:
|
1565 |
+
loss_fct = CrossEntropyLoss()
|
1566 |
+
next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1))
|
1567 |
+
|
1568 |
+
if not return_dict:
|
1569 |
+
output = (seq_relationship_scores,) + outputs[2:]
|
1570 |
+
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
|
1571 |
+
|
1572 |
+
return NextSentencePredictorOutput(
|
1573 |
+
loss=next_sentence_loss,
|
1574 |
+
logits=seq_relationship_scores,
|
1575 |
+
hidden_states=outputs.hidden_states,
|
1576 |
+
attentions=outputs.attentions,
|
1577 |
+
)
|
1578 |
+
|
1579 |
+
|
1580 |
+
@add_start_docstrings(
|
1581 |
+
"""
|
1582 |
+
CharacterBERT Model transformer with a sequence classification/regression head on top (a linear layer on top of the
|
1583 |
+
pooled output) e.g. for GLUE tasks.
|
1584 |
+
""",
|
1585 |
+
CHARACTER_BERT_START_DOCSTRING,
|
1586 |
+
)
|
1587 |
+
class CharacterBertForSequenceClassification(CharacterBertPreTrainedModel):
|
1588 |
+
def __init__(self, config):
|
1589 |
+
super().__init__(config)
|
1590 |
+
self.num_labels = config.num_labels
|
1591 |
+
self.character_bert = CharacterBertModel(config)
|
1592 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1593 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1594 |
+
|
1595 |
+
self.init_weights()
|
1596 |
+
|
1597 |
+
@add_start_docstrings_to_model_forward(
|
1598 |
+
CHARACTER_BERT_INPUTS_DOCSTRING.format(
|
1599 |
+
"(batch_size, sequence_length, maximum_token_length)", "(batch_size, sequence_length)"
|
1600 |
+
)
|
1601 |
+
)
|
1602 |
+
@add_code_sample_docstrings(
|
1603 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
1604 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1605 |
+
output_type=SequenceClassifierOutput,
|
1606 |
+
config_class=_CONFIG_FOR_DOC,
|
1607 |
+
)
|
1608 |
+
def forward(
|
1609 |
+
self,
|
1610 |
+
input_ids=None,
|
1611 |
+
attention_mask=None,
|
1612 |
+
token_type_ids=None,
|
1613 |
+
position_ids=None,
|
1614 |
+
head_mask=None,
|
1615 |
+
inputs_embeds=None,
|
1616 |
+
labels=None,
|
1617 |
+
output_attentions=None,
|
1618 |
+
output_hidden_states=None,
|
1619 |
+
return_dict=None,
|
1620 |
+
):
|
1621 |
+
r"""
|
1622 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1623 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss),
|
1624 |
+
If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1625 |
+
"""
|
1626 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1627 |
+
|
1628 |
+
outputs = self.character_bert(
|
1629 |
+
input_ids,
|
1630 |
+
attention_mask=attention_mask,
|
1631 |
+
token_type_ids=token_type_ids,
|
1632 |
+
position_ids=position_ids,
|
1633 |
+
head_mask=head_mask,
|
1634 |
+
inputs_embeds=inputs_embeds,
|
1635 |
+
output_attentions=output_attentions,
|
1636 |
+
output_hidden_states=output_hidden_states,
|
1637 |
+
return_dict=return_dict,
|
1638 |
+
)
|
1639 |
+
|
1640 |
+
pooled_output = outputs[1]
|
1641 |
+
|
1642 |
+
pooled_output = self.dropout(pooled_output)
|
1643 |
+
logits = self.classifier(pooled_output)
|
1644 |
+
|
1645 |
+
loss = None
|
1646 |
+
if labels is not None:
|
1647 |
+
if self.num_labels == 1:
|
1648 |
+
# We are doing regression
|
1649 |
+
loss_fct = MSELoss()
|
1650 |
+
loss = loss_fct(logits.view(-1), labels.view(-1))
|
1651 |
+
else:
|
1652 |
+
loss_fct = CrossEntropyLoss()
|
1653 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1654 |
+
|
1655 |
+
if not return_dict:
|
1656 |
+
output = (logits,) + outputs[2:]
|
1657 |
+
return ((loss,) + output) if loss is not None else output
|
1658 |
+
|
1659 |
+
return SequenceClassifierOutput(
|
1660 |
+
loss=loss,
|
1661 |
+
logits=logits,
|
1662 |
+
hidden_states=outputs.hidden_states,
|
1663 |
+
attentions=outputs.attentions,
|
1664 |
+
)
|
1665 |
+
|
1666 |
+
|
1667 |
+
@add_start_docstrings(
|
1668 |
+
"""
|
1669 |
+
CharacterBERT Model with a multiple choice classification head on top (a linear layer on top of the pooled output
|
1670 |
+
and a softmax) e.g. for RocStories/SWAG tasks.
|
1671 |
+
""",
|
1672 |
+
CHARACTER_BERT_START_DOCSTRING,
|
1673 |
+
)
|
1674 |
+
class CharacterBertForMultipleChoice(CharacterBertPreTrainedModel):
|
1675 |
+
def __init__(self, config):
|
1676 |
+
super().__init__(config)
|
1677 |
+
|
1678 |
+
self.character_bert = CharacterBertModel(config)
|
1679 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1680 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
1681 |
+
|
1682 |
+
self.init_weights()
|
1683 |
+
|
1684 |
+
@add_start_docstrings_to_model_forward(
|
1685 |
+
CHARACTER_BERT_INPUTS_DOCSTRING.format(
|
1686 |
+
"(batch_size, sequence_length, maximum_token_length)", "(batch_size, sequence_length)"
|
1687 |
+
)
|
1688 |
+
)
|
1689 |
+
@add_code_sample_docstrings(
|
1690 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
1691 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1692 |
+
output_type=MultipleChoiceModelOutput,
|
1693 |
+
config_class=_CONFIG_FOR_DOC,
|
1694 |
+
)
|
1695 |
+
def forward(
|
1696 |
+
self,
|
1697 |
+
input_ids=None,
|
1698 |
+
attention_mask=None,
|
1699 |
+
token_type_ids=None,
|
1700 |
+
position_ids=None,
|
1701 |
+
head_mask=None,
|
1702 |
+
inputs_embeds=None,
|
1703 |
+
labels=None,
|
1704 |
+
output_attentions=None,
|
1705 |
+
output_hidden_states=None,
|
1706 |
+
return_dict=None,
|
1707 |
+
):
|
1708 |
+
r"""
|
1709 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1710 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
1711 |
+
`input_ids` above)
|
1712 |
+
"""
|
1713 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1714 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1715 |
+
|
1716 |
+
input_ids = input_ids.view(-1, input_ids.size(-2), input_ids.size(-1)) if input_ids is not None else None
|
1717 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1718 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1719 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1720 |
+
inputs_embeds = (
|
1721 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1722 |
+
if inputs_embeds is not None
|
1723 |
+
else None
|
1724 |
+
)
|
1725 |
+
|
1726 |
+
outputs = self.character_bert(
|
1727 |
+
input_ids,
|
1728 |
+
attention_mask=attention_mask,
|
1729 |
+
token_type_ids=token_type_ids,
|
1730 |
+
position_ids=position_ids,
|
1731 |
+
head_mask=head_mask,
|
1732 |
+
inputs_embeds=inputs_embeds,
|
1733 |
+
output_attentions=output_attentions,
|
1734 |
+
output_hidden_states=output_hidden_states,
|
1735 |
+
return_dict=return_dict,
|
1736 |
+
)
|
1737 |
+
|
1738 |
+
pooled_output = outputs[1]
|
1739 |
+
|
1740 |
+
pooled_output = self.dropout(pooled_output)
|
1741 |
+
logits = self.classifier(pooled_output)
|
1742 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1743 |
+
|
1744 |
+
loss = None
|
1745 |
+
if labels is not None:
|
1746 |
+
loss_fct = CrossEntropyLoss()
|
1747 |
+
loss = loss_fct(reshaped_logits, labels)
|
1748 |
+
|
1749 |
+
if not return_dict:
|
1750 |
+
output = (reshaped_logits,) + outputs[2:]
|
1751 |
+
return ((loss,) + output) if loss is not None else output
|
1752 |
+
|
1753 |
+
return MultipleChoiceModelOutput(
|
1754 |
+
loss=loss,
|
1755 |
+
logits=reshaped_logits,
|
1756 |
+
hidden_states=outputs.hidden_states,
|
1757 |
+
attentions=outputs.attentions,
|
1758 |
+
)
|
1759 |
+
|
1760 |
+
|
1761 |
+
@add_start_docstrings(
|
1762 |
+
"""
|
1763 |
+
CharacterBERT Model with a token classification head on top (a linear layer on top of the hidden-states output)
|
1764 |
+
e.g. for Named-Entity-Recognition (NER) tasks.
|
1765 |
+
""",
|
1766 |
+
CHARACTER_BERT_START_DOCSTRING,
|
1767 |
+
)
|
1768 |
+
class CharacterBertForTokenClassification(CharacterBertPreTrainedModel):
|
1769 |
+
def __init__(self, config):
|
1770 |
+
super().__init__(config)
|
1771 |
+
self.num_labels = config.num_labels
|
1772 |
+
|
1773 |
+
self.character_bert = CharacterBertModel(config)
|
1774 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1775 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1776 |
+
|
1777 |
+
self.init_weights()
|
1778 |
+
|
1779 |
+
@add_start_docstrings_to_model_forward(
|
1780 |
+
CHARACTER_BERT_INPUTS_DOCSTRING.format(
|
1781 |
+
"(batch_size, sequence_length, maximum_token_length)", "(batch_size, sequence_length)"
|
1782 |
+
)
|
1783 |
+
)
|
1784 |
+
@add_code_sample_docstrings(
|
1785 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
1786 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1787 |
+
output_type=TokenClassifierOutput,
|
1788 |
+
config_class=_CONFIG_FOR_DOC,
|
1789 |
+
)
|
1790 |
+
def forward(
|
1791 |
+
self,
|
1792 |
+
input_ids=None,
|
1793 |
+
attention_mask=None,
|
1794 |
+
token_type_ids=None,
|
1795 |
+
position_ids=None,
|
1796 |
+
head_mask=None,
|
1797 |
+
inputs_embeds=None,
|
1798 |
+
labels=None,
|
1799 |
+
output_attentions=None,
|
1800 |
+
output_hidden_states=None,
|
1801 |
+
return_dict=None,
|
1802 |
+
):
|
1803 |
+
r"""
|
1804 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1805 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1806 |
+
"""
|
1807 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1808 |
+
|
1809 |
+
outputs = self.character_bert(
|
1810 |
+
input_ids,
|
1811 |
+
attention_mask=attention_mask,
|
1812 |
+
token_type_ids=token_type_ids,
|
1813 |
+
position_ids=position_ids,
|
1814 |
+
head_mask=head_mask,
|
1815 |
+
inputs_embeds=inputs_embeds,
|
1816 |
+
output_attentions=output_attentions,
|
1817 |
+
output_hidden_states=output_hidden_states,
|
1818 |
+
return_dict=return_dict,
|
1819 |
+
)
|
1820 |
+
|
1821 |
+
sequence_output = outputs[0]
|
1822 |
+
|
1823 |
+
sequence_output = self.dropout(sequence_output)
|
1824 |
+
logits = self.classifier(sequence_output)
|
1825 |
+
|
1826 |
+
loss = None
|
1827 |
+
if labels is not None:
|
1828 |
+
loss_fct = CrossEntropyLoss()
|
1829 |
+
# Only keep active parts of the loss
|
1830 |
+
if attention_mask is not None:
|
1831 |
+
active_loss = attention_mask.view(-1) == 1
|
1832 |
+
active_logits = logits.view(-1, self.num_labels)
|
1833 |
+
active_labels = torch.where(
|
1834 |
+
active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
|
1835 |
+
)
|
1836 |
+
loss = loss_fct(active_logits, active_labels)
|
1837 |
+
else:
|
1838 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1839 |
+
|
1840 |
+
if not return_dict:
|
1841 |
+
output = (logits,) + outputs[2:]
|
1842 |
+
return ((loss,) + output) if loss is not None else output
|
1843 |
+
|
1844 |
+
return TokenClassifierOutput(
|
1845 |
+
loss=loss,
|
1846 |
+
logits=logits,
|
1847 |
+
hidden_states=outputs.hidden_states,
|
1848 |
+
attentions=outputs.attentions,
|
1849 |
+
)
|
1850 |
+
|
1851 |
+
|
1852 |
+
@add_start_docstrings(
|
1853 |
+
"""
|
1854 |
+
CharacterBERT Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
|
1855 |
+
linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1856 |
+
""",
|
1857 |
+
CHARACTER_BERT_START_DOCSTRING,
|
1858 |
+
)
|
1859 |
+
class CharacterBertForQuestionAnswering(CharacterBertPreTrainedModel):
|
1860 |
+
def __init__(self, config):
|
1861 |
+
super().__init__(config)
|
1862 |
+
|
1863 |
+
config.num_labels = 2
|
1864 |
+
self.num_labels = config.num_labels
|
1865 |
+
|
1866 |
+
self.character_bert = CharacterBertModel(config)
|
1867 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1868 |
+
|
1869 |
+
self.init_weights()
|
1870 |
+
|
1871 |
+
@add_start_docstrings_to_model_forward(
|
1872 |
+
CHARACTER_BERT_INPUTS_DOCSTRING.format(
|
1873 |
+
"(batch_size, sequence_length, maximum_token_length)", "(batch_size, sequence_length)"
|
1874 |
+
)
|
1875 |
+
)
|
1876 |
+
@add_code_sample_docstrings(
|
1877 |
+
processor_class=_TOKENIZER_FOR_DOC,
|
1878 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1879 |
+
output_type=QuestionAnsweringModelOutput,
|
1880 |
+
config_class=_CONFIG_FOR_DOC,
|
1881 |
+
)
|
1882 |
+
def forward(
|
1883 |
+
self,
|
1884 |
+
input_ids=None,
|
1885 |
+
attention_mask=None,
|
1886 |
+
token_type_ids=None,
|
1887 |
+
position_ids=None,
|
1888 |
+
head_mask=None,
|
1889 |
+
inputs_embeds=None,
|
1890 |
+
start_positions=None,
|
1891 |
+
end_positions=None,
|
1892 |
+
output_attentions=None,
|
1893 |
+
output_hidden_states=None,
|
1894 |
+
return_dict=None,
|
1895 |
+
):
|
1896 |
+
r"""
|
1897 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1898 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1899 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the
|
1900 |
+
sequence are not taken into account for computing the loss.
|
1901 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1902 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1903 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the
|
1904 |
+
sequence are not taken into account for computing the loss.
|
1905 |
+
"""
|
1906 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1907 |
+
|
1908 |
+
outputs = self.character_bert(
|
1909 |
+
input_ids,
|
1910 |
+
attention_mask=attention_mask,
|
1911 |
+
token_type_ids=token_type_ids,
|
1912 |
+
position_ids=position_ids,
|
1913 |
+
head_mask=head_mask,
|
1914 |
+
inputs_embeds=inputs_embeds,
|
1915 |
+
output_attentions=output_attentions,
|
1916 |
+
output_hidden_states=output_hidden_states,
|
1917 |
+
return_dict=return_dict,
|
1918 |
+
)
|
1919 |
+
|
1920 |
+
sequence_output = outputs[0]
|
1921 |
+
|
1922 |
+
logits = self.qa_outputs(sequence_output)
|
1923 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1924 |
+
start_logits = start_logits.squeeze(-1)
|
1925 |
+
end_logits = end_logits.squeeze(-1)
|
1926 |
+
|
1927 |
+
total_loss = None
|
1928 |
+
if start_positions is not None and end_positions is not None:
|
1929 |
+
# If we are on multi-GPU, split add a dimension
|
1930 |
+
if len(start_positions.size()) > 1:
|
1931 |
+
start_positions = start_positions.squeeze(-1)
|
1932 |
+
if len(end_positions.size()) > 1:
|
1933 |
+
end_positions = end_positions.squeeze(-1)
|
1934 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1935 |
+
ignored_index = start_logits.size(1)
|
1936 |
+
start_positions.clamp_(0, ignored_index)
|
1937 |
+
end_positions.clamp_(0, ignored_index)
|
1938 |
+
|
1939 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1940 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1941 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1942 |
+
total_loss = (start_loss + end_loss) / 2
|
1943 |
+
|
1944 |
+
if not return_dict:
|
1945 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1946 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1947 |
+
|
1948 |
+
return QuestionAnsweringModelOutput(
|
1949 |
+
loss=total_loss,
|
1950 |
+
start_logits=start_logits,
|
1951 |
+
end_logits=end_logits,
|
1952 |
+
hidden_states=outputs.hidden_states,
|
1953 |
+
attentions=outputs.attentions,
|
1954 |
+
)
|
tokenization_character_bert.py
ADDED
@@ -0,0 +1,930 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright Hicham EL BOUKKOURI, Olivier FERRET, Thomas LAVERGNE, Hiroshi NOJI,
|
3 |
+
# Pierre ZWEIGENBAUM, Junichi TSUJII and The HuggingFace Inc. team.
|
4 |
+
# All rights reserved.
|
5 |
+
#
|
6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
7 |
+
# you may not use this file except in compliance with the License.
|
8 |
+
# You may obtain a copy of the License at
|
9 |
+
#
|
10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
11 |
+
#
|
12 |
+
# Unless required by applicable law or agreed to in writing, software
|
13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
15 |
+
# See the License for the specific language governing permissions and
|
16 |
+
# limitations under the License.
|
17 |
+
"""Tokenization classes for CharacterBERT."""
|
18 |
+
import json
|
19 |
+
import os
|
20 |
+
import unicodedata
|
21 |
+
from collections import OrderedDict
|
22 |
+
from typing import Dict, List, Optional, Tuple, Union
|
23 |
+
|
24 |
+
import numpy as np
|
25 |
+
|
26 |
+
from transformers.file_utils import is_tf_available, is_torch_available, to_py_obj
|
27 |
+
from transformers.tokenization_utils import (
|
28 |
+
BatchEncoding,
|
29 |
+
EncodedInput,
|
30 |
+
PaddingStrategy,
|
31 |
+
PreTrainedTokenizer,
|
32 |
+
TensorType,
|
33 |
+
_is_control,
|
34 |
+
_is_punctuation,
|
35 |
+
_is_whitespace,
|
36 |
+
)
|
37 |
+
from transformers.tokenization_utils_base import ADDED_TOKENS_FILE
|
38 |
+
from transformers.utils import logging
|
39 |
+
|
40 |
+
|
41 |
+
logger = logging.get_logger(__name__)
|
42 |
+
|
43 |
+
VOCAB_FILES_NAMES = {
|
44 |
+
"mlm_vocab_file": "mlm_vocab.txt",
|
45 |
+
}
|
46 |
+
|
47 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
48 |
+
"mlm_vocab_file": {
|
49 |
+
"helboukkouri/character-bert": "https://huggingface.co/helboukkouri/character-bert/resolve/main/mlm_vocab.txt",
|
50 |
+
"helboukkouri/character-bert-medical": "https://huggingface.co/helboukkouri/character-bert-medical/resolve/main/mlm_vocab.txt",
|
51 |
+
}
|
52 |
+
}
|
53 |
+
|
54 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
55 |
+
"helboukkouri/character-bert": 512,
|
56 |
+
"helboukkouri/character-bert-medical": 512,
|
57 |
+
}
|
58 |
+
|
59 |
+
PRETRAINED_INIT_CONFIGURATION = {
|
60 |
+
"helboukkouri/character-bert": {"max_word_length": 50, "do_lower_case": True},
|
61 |
+
"helboukkouri/character-bert-medical": {"max_word_length": 50, "do_lower_case": True},
|
62 |
+
}
|
63 |
+
|
64 |
+
PAD_TOKEN_CHAR_ID = 0
|
65 |
+
|
66 |
+
|
67 |
+
def whitespace_tokenize(text):
|
68 |
+
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
69 |
+
text = text.strip()
|
70 |
+
if not text:
|
71 |
+
return []
|
72 |
+
tokens = text.split()
|
73 |
+
return tokens
|
74 |
+
|
75 |
+
|
76 |
+
def build_mlm_ids_to_tokens_mapping(mlm_vocab_file):
|
77 |
+
"""Builds a Masked Language Modeling ids to masked tokens mapping."""
|
78 |
+
vocabulary = []
|
79 |
+
with open(mlm_vocab_file, "r", encoding="utf-8") as reader:
|
80 |
+
for line in reader:
|
81 |
+
line = line.strip()
|
82 |
+
if line:
|
83 |
+
vocabulary.append(line)
|
84 |
+
return OrderedDict(list(enumerate(vocabulary)))
|
85 |
+
|
86 |
+
|
87 |
+
class CharacterBertTokenizer(PreTrainedTokenizer):
|
88 |
+
"""
|
89 |
+
Construct a CharacterBERT tokenizer. Based on characters.
|
90 |
+
|
91 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods.
|
92 |
+
Users should refer to this superclass for more information regarding those methods.
|
93 |
+
|
94 |
+
Args:
|
95 |
+
mlm_vocab_file (`str`, *optional*, defaults to `None`):
|
96 |
+
Path to the Masked Language Modeling vocabulary. This is used for converting the output (token ids) of the
|
97 |
+
MLM model into tokens.
|
98 |
+
max_word_length (`int`, *optional*, defaults to `50`):
|
99 |
+
The maximum token length in characters (actually, in bytes as any non-ascii characters will be converted to
|
100 |
+
a sequence of utf-8 bytes).
|
101 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
102 |
+
Whether or not to lowercase the input when tokenizing.
|
103 |
+
do_basic_tokenize (`bool`, *optional*, defaults to `True`):
|
104 |
+
Whether or not to do basic tokenization before WordPiece.
|
105 |
+
never_split (`Iterable`, *optional*):
|
106 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
107 |
+
`do_basic_tokenize=True`
|
108 |
+
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
|
109 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
110 |
+
token instead.
|
111 |
+
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
|
112 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
113 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
114 |
+
token of a sequence built with special tokens.
|
115 |
+
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
|
116 |
+
The token used for padding, for example when batching sequences of different lengths.
|
117 |
+
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
|
118 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
119 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
120 |
+
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
|
121 |
+
The token used for masking values. This is the token used when training this model with masked language
|
122 |
+
modeling. This is the token which the model will try to predict.
|
123 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
124 |
+
Whether or not to tokenize Chinese characters.
|
125 |
+
strip_accents: (`bool`, *optional*):
|
126 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
127 |
+
value for `lowercase` (as in the original BERT).
|
128 |
+
"""
|
129 |
+
|
130 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
131 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
132 |
+
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
|
133 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
134 |
+
|
135 |
+
def __init__(
|
136 |
+
self,
|
137 |
+
mlm_vocab_file=None,
|
138 |
+
max_word_length=50,
|
139 |
+
do_lower_case=True,
|
140 |
+
do_basic_tokenize=True,
|
141 |
+
never_split=None,
|
142 |
+
unk_token="[UNK]",
|
143 |
+
sep_token="[SEP]",
|
144 |
+
pad_token="[PAD]",
|
145 |
+
cls_token="[CLS]",
|
146 |
+
mask_token="[MASK]",
|
147 |
+
tokenize_chinese_chars=True,
|
148 |
+
strip_accents=None,
|
149 |
+
**kwargs
|
150 |
+
):
|
151 |
+
super().__init__(
|
152 |
+
max_word_length=max_word_length,
|
153 |
+
do_lower_case=do_lower_case,
|
154 |
+
do_basic_tokenize=do_basic_tokenize,
|
155 |
+
never_split=never_split,
|
156 |
+
unk_token=unk_token,
|
157 |
+
sep_token=sep_token,
|
158 |
+
pad_token=pad_token,
|
159 |
+
cls_token=cls_token,
|
160 |
+
mask_token=mask_token,
|
161 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
162 |
+
strip_accents=strip_accents,
|
163 |
+
**kwargs,
|
164 |
+
)
|
165 |
+
# This prevents splitting special tokens during tokenization
|
166 |
+
self.unique_no_split_tokens = [self.cls_token, self.mask_token, self.pad_token, self.sep_token, self.unk_token]
|
167 |
+
# This is used for converting MLM ids into tokens
|
168 |
+
if mlm_vocab_file is None:
|
169 |
+
self.ids_to_tokens = None
|
170 |
+
else:
|
171 |
+
if not os.path.isfile(mlm_vocab_file):
|
172 |
+
raise ValueError(
|
173 |
+
f"Can't find a vocabulary file at path '{mlm_vocab_file}'. "
|
174 |
+
"To load the vocabulary from a pretrained model use "
|
175 |
+
"`tokenizer = CharacterBertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
176 |
+
)
|
177 |
+
self.ids_to_tokens = build_mlm_ids_to_tokens_mapping(mlm_vocab_file)
|
178 |
+
# Tokenization is handled by BasicTokenizer
|
179 |
+
self.do_basic_tokenize = do_basic_tokenize
|
180 |
+
if do_basic_tokenize:
|
181 |
+
self.basic_tokenizer = BasicTokenizer(
|
182 |
+
do_lower_case=do_lower_case,
|
183 |
+
never_split=never_split,
|
184 |
+
tokenize_chinese_chars=tokenize_chinese_chars,
|
185 |
+
strip_accents=strip_accents,
|
186 |
+
)
|
187 |
+
# Then, a CharacterMapper is responsible for converting tokens into character ids
|
188 |
+
self.max_word_length = max_word_length
|
189 |
+
self._mapper = CharacterMapper(max_word_length=max_word_length)
|
190 |
+
|
191 |
+
def __repr__(self) -> str:
|
192 |
+
# NOTE: we overwrite this because CharacterBERT does not have self.vocab_size
|
193 |
+
return (
|
194 |
+
f"CharacterBertTokenizer(name_or_path='{self.name_or_path}', "
|
195 |
+
+ (f"mlm_vocab_size={self.mlm_vocab_size}, " if self.ids_to_tokens else "")
|
196 |
+
+ f"model_max_len={self.model_max_length}, is_fast={self.is_fast}, "
|
197 |
+
+ f"padding_side='{self.padding_side}', special_tokens={self.special_tokens_map_extended})"
|
198 |
+
)
|
199 |
+
|
200 |
+
def __len__(self):
|
201 |
+
"""
|
202 |
+
Size of the full vocabulary with the added tokens.
|
203 |
+
"""
|
204 |
+
# return self.vocab_size + len(self.added_tokens_encoder)
|
205 |
+
return 0 + len(self.added_tokens_encoder)
|
206 |
+
|
207 |
+
@property
|
208 |
+
def do_lower_case(self):
|
209 |
+
return self.basic_tokenizer.do_lower_case
|
210 |
+
|
211 |
+
@property
|
212 |
+
def vocab_size(self):
|
213 |
+
raise NotImplementedError("CharacterBERT does not use a token vocabulary.")
|
214 |
+
|
215 |
+
@property
|
216 |
+
def mlm_vocab_size(self):
|
217 |
+
if self.ids_to_tokens is None:
|
218 |
+
raise ValueError(
|
219 |
+
"CharacterBertTokenizer was initialized without a MLM "
|
220 |
+
"vocabulary. You can either pass one manually or load a "
|
221 |
+
"pre-trained tokenizer using: "
|
222 |
+
"`tokenizer = CharacterBertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
223 |
+
)
|
224 |
+
return len(self.ids_to_tokens)
|
225 |
+
|
226 |
+
def add_special_tokens(self, *args, **kwargs):
|
227 |
+
raise NotImplementedError("Adding special tokens is not supported for now.")
|
228 |
+
|
229 |
+
def add_tokens(self, *args, **kwargs):
|
230 |
+
# We don't raise an Exception here to allow for ignoring this step.
|
231 |
+
# Otherwise, many inherited methods would need to be re-implemented...
|
232 |
+
pass
|
233 |
+
|
234 |
+
def get_vocab(self):
|
235 |
+
raise NotImplementedError("CharacterBERT does not have a token vocabulary.")
|
236 |
+
|
237 |
+
def get_mlm_vocab(self):
|
238 |
+
return {token: i for i, token in self.ids_to_tokens.items()}
|
239 |
+
|
240 |
+
def _tokenize(self, text):
|
241 |
+
split_tokens = []
|
242 |
+
if self.do_basic_tokenize:
|
243 |
+
split_tokens = self.basic_tokenizer.tokenize(text=text, never_split=self.all_special_tokens)
|
244 |
+
else:
|
245 |
+
split_tokens = whitespace_tokenize(text) # Default to whitespace tokenization
|
246 |
+
return split_tokens
|
247 |
+
|
248 |
+
def convert_tokens_to_string(self, tokens):
|
249 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
250 |
+
out_string = " ".join(tokens).strip()
|
251 |
+
return out_string
|
252 |
+
|
253 |
+
def _convert_token_to_id(self, token):
|
254 |
+
"""Converts a token (str) into a sequence of character ids."""
|
255 |
+
return self._mapper.convert_word_to_char_ids(token)
|
256 |
+
|
257 |
+
def _convert_id_to_token(self, index: List[int]):
|
258 |
+
# NOTE: keeping the same variable name `ìndex` although this will
|
259 |
+
# always be a sequence of indices.
|
260 |
+
"""Converts an index (actually, a list of indices) in a token (str)."""
|
261 |
+
return self._mapper.convert_char_ids_to_word(index)
|
262 |
+
|
263 |
+
def convert_ids_to_tokens(
|
264 |
+
self, ids: Union[List[int], List[List[int]]], skip_special_tokens: bool = False
|
265 |
+
) -> Union[str, List[str]]:
|
266 |
+
"""
|
267 |
+
Converts a single sequence of character indices or a sequence of character id sequences in a token or a
|
268 |
+
sequence of tokens.
|
269 |
+
|
270 |
+
Args:
|
271 |
+
ids (`int` or `List[int]`):
|
272 |
+
The token id (or token ids) to convert to tokens.
|
273 |
+
skip_special_tokens (`bool`, *optional*, defaults to `False`):
|
274 |
+
Whether or not to remove special tokens in the decoding.
|
275 |
+
|
276 |
+
Returns:
|
277 |
+
`str` or `List[str]`: The decoded token(s).
|
278 |
+
"""
|
279 |
+
if isinstance(ids, list) and isinstance(ids[0], int):
|
280 |
+
if tuple(ids) in self.added_tokens_decoder:
|
281 |
+
return self.added_tokens_decoder[tuple(ids)]
|
282 |
+
else:
|
283 |
+
return self._convert_id_to_token(ids)
|
284 |
+
tokens = []
|
285 |
+
for indices in ids:
|
286 |
+
indices = list(map(int, indices))
|
287 |
+
if skip_special_tokens and tuple(indices) in self.all_special_ids:
|
288 |
+
continue
|
289 |
+
if tuple(indices) in self.added_tokens_decoder:
|
290 |
+
tokens.append(self.added_tokens_decoder[tuple(indices)])
|
291 |
+
else:
|
292 |
+
tokens.append(self._convert_id_to_token(indices))
|
293 |
+
return tokens
|
294 |
+
|
295 |
+
def convert_mlm_id_to_token(self, mlm_id):
|
296 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
297 |
+
if self.ids_to_tokens is None:
|
298 |
+
raise ValueError(
|
299 |
+
"CharacterBertTokenizer was initialized without a MLM "
|
300 |
+
"vocabulary. You can either pass one manually or load a "
|
301 |
+
"pre-trained tokenizer using: "
|
302 |
+
"`tokenizer = CharacterBertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
303 |
+
)
|
304 |
+
assert (
|
305 |
+
mlm_id < self.mlm_vocab_size
|
306 |
+
), "Attempting to convert a MLM id that is greater than the MLM vocabulary size."
|
307 |
+
return self.ids_to_tokens[mlm_id]
|
308 |
+
|
309 |
+
def build_inputs_with_special_tokens(
|
310 |
+
self, token_ids_0: List[List[int]], token_ids_1: Optional[List[List[int]]] = None
|
311 |
+
) -> List[List[int]]:
|
312 |
+
"""
|
313 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
314 |
+
adding special tokens. A CharacterBERT sequence has the following format:
|
315 |
+
|
316 |
+
- single sequence: `[CLS] X [SEP]`
|
317 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
318 |
+
|
319 |
+
Args:
|
320 |
+
token_ids_0 (`List[int]`):
|
321 |
+
List of IDs to which the special tokens will be added.
|
322 |
+
token_ids_1 (`List[int]`, *optional*):
|
323 |
+
Optional second list of IDs for sequence pairs.
|
324 |
+
|
325 |
+
Returns:
|
326 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
327 |
+
"""
|
328 |
+
if token_ids_1 is None:
|
329 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
330 |
+
cls = [self.cls_token_id]
|
331 |
+
sep = [self.sep_token_id]
|
332 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
333 |
+
|
334 |
+
def get_special_tokens_mask(
|
335 |
+
self,
|
336 |
+
token_ids_0: List[List[int]],
|
337 |
+
token_ids_1: Optional[List[List[int]]] = None,
|
338 |
+
already_has_special_tokens: bool = False,
|
339 |
+
) -> List[int]:
|
340 |
+
"""
|
341 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
342 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
343 |
+
|
344 |
+
Args:
|
345 |
+
token_ids_0 (`List[int]`):
|
346 |
+
List of IDs.
|
347 |
+
token_ids_1 (`List[int]`, *optional*):
|
348 |
+
Optional second list of IDs for sequence pairs.
|
349 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
350 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
351 |
+
|
352 |
+
Returns:
|
353 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
354 |
+
"""
|
355 |
+
if already_has_special_tokens:
|
356 |
+
if token_ids_1 is not None:
|
357 |
+
raise ValueError(
|
358 |
+
"You should not supply a second sequence if the provided sequence of "
|
359 |
+
"ids is already formatted with special tokens for the model."
|
360 |
+
)
|
361 |
+
return list(map(lambda x: 1 if x in [self.sep_token_id, self.cls_token_id] else 0, token_ids_0))
|
362 |
+
|
363 |
+
if token_ids_1 is not None:
|
364 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
365 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
366 |
+
|
367 |
+
def create_token_type_ids_from_sequences(
|
368 |
+
self, token_ids_0: List[List[int]], token_ids_1: Optional[List[List[int]]] = None
|
369 |
+
) -> List[int]:
|
370 |
+
"""
|
371 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A CharacterBERT
|
372 |
+
sequence pair mask has the following format:
|
373 |
+
|
374 |
+
```
|
375 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence |
|
376 |
+
```
|
377 |
+
|
378 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
379 |
+
|
380 |
+
Args:
|
381 |
+
token_ids_0 (`List[int]`):
|
382 |
+
List of IDs.
|
383 |
+
token_ids_1 (`List[int]`, *optional*):
|
384 |
+
Optional second list of IDs for sequence pairs.
|
385 |
+
|
386 |
+
Returns:
|
387 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given
|
388 |
+
sequence(s).
|
389 |
+
"""
|
390 |
+
sep = [self.sep_token_id]
|
391 |
+
cls = [self.cls_token_id]
|
392 |
+
if token_ids_1 is None:
|
393 |
+
return len(cls + token_ids_0 + sep) * [0]
|
394 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
395 |
+
|
396 |
+
# def pad(
|
397 |
+
# self,
|
398 |
+
# encoded_inputs: Union[
|
399 |
+
# BatchEncoding,
|
400 |
+
# List[BatchEncoding],
|
401 |
+
# Dict[str, EncodedInput],
|
402 |
+
# Dict[str, List[EncodedInput]],
|
403 |
+
# List[Dict[str, EncodedInput]],
|
404 |
+
# ],
|
405 |
+
# padding: Union[bool, str, PaddingStrategy] = True,
|
406 |
+
# max_length: Optional[int] = None,
|
407 |
+
# pad_to_multiple_of: Optional[int] = None,
|
408 |
+
# return_attention_mask: Optional[bool] = None,
|
409 |
+
# return_tensors: Optional[Union[str, TensorType]] = None,
|
410 |
+
# verbose: bool = True,
|
411 |
+
# ) -> BatchEncoding:
|
412 |
+
# """
|
413 |
+
# Pad a single encoded input or a batch of encoded inputs up to predefined length or to the max sequence length
|
414 |
+
# in the batch.
|
415 |
+
|
416 |
+
# Padding side (left/right) padding token ids are defined at the tokenizer level (with `self.padding_side`,
|
417 |
+
# `self.pad_token_id` and `self.pad_token_type_id`)
|
418 |
+
|
419 |
+
# <Tip>
|
420 |
+
|
421 |
+
# If the `encoded_inputs` passed are dictionary of numpy arrays, PyTorch tensors or TensorFlow tensors, the
|
422 |
+
# result will use the same type unless you provide a different tensor type with `return_tensors`. In the
|
423 |
+
# case of PyTorch tensors, you will lose the specific device of your tensors however.
|
424 |
+
|
425 |
+
# </Tip>
|
426 |
+
|
427 |
+
# Args:
|
428 |
+
# encoded_inputs (:
|
429 |
+
# class:*~transformers.BatchEncoding*, list of [`BatchEncoding`], `Dict[str, List[int]]`, `Dict[str, List[List[int]]` or `List[Dict[str, List[int]]]`): Tokenized inputs.
|
430 |
+
# Can represent one input ([`BatchEncoding`] or `Dict[str, List[int]]`) or a
|
431 |
+
# batch of tokenized inputs (list of [`BatchEncoding`], *Dict[str, List[List[int]]]*
|
432 |
+
# or *List[Dict[str, List[int]]]*) so you can use this method during preprocessing as well as in a
|
433 |
+
# PyTorch Dataloader collate function.
|
434 |
+
|
435 |
+
# Instead of `List[int]` you can have tensors (numpy arrays, PyTorch tensors or TensorFlow tensors),
|
436 |
+
# see the note above for the return type.
|
437 |
+
# padding (:
|
438 |
+
# obj:*bool*, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to
|
439 |
+
# `True`): Select a strategy to pad the returned sequences (according to the model's padding side
|
440 |
+
# and padding index) among:
|
441 |
+
|
442 |
+
# - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a
|
443 |
+
# single sequence if provided).
|
444 |
+
# - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the
|
445 |
+
# maximum acceptable input length for the model if that argument is not provided.
|
446 |
+
# - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
447 |
+
# different lengths).
|
448 |
+
# max_length (`int`, *optional*):
|
449 |
+
# Maximum length of the returned list and optionally padding length (see above).
|
450 |
+
# pad_to_multiple_of (`int`, *optional*):
|
451 |
+
# If set will pad the sequence to a multiple of the provided value.
|
452 |
+
|
453 |
+
# This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability
|
454 |
+
# >= 7.5 (Volta).
|
455 |
+
# return_attention_mask (`bool`, *optional*):
|
456 |
+
# Whether to return the attention mask. If left to the default, will return the attention mask according
|
457 |
+
# to the specific tokenizer's default, defined by the `return_outputs` attribute.
|
458 |
+
|
459 |
+
# [What are attention masks?](../glossary#attention-mask)
|
460 |
+
# return_tensors (`str` or [`~file_utils.TensorType`], *optional*):
|
461 |
+
# If set, will return tensors instead of list of python integers. Acceptable values are:
|
462 |
+
|
463 |
+
# - `'tf'`: Return TensorFlow `tf.constant` objects.
|
464 |
+
# - `'pt'`: Return PyTorch `torch.Tensor` objects.
|
465 |
+
# - `'np'`: Return Numpy `np.ndarray` objects.
|
466 |
+
# verbose (`bool`, *optional*, defaults to `True`):
|
467 |
+
# Whether or not to print more information and warnings.
|
468 |
+
# """
|
469 |
+
# # If we have a list of dicts, let's convert it in a dict of lists
|
470 |
+
# # We do this to allow using this method as a collate_fn function in PyTorch Dataloader
|
471 |
+
# if isinstance(encoded_inputs, (list, tuple)) and isinstance(encoded_inputs[0], (dict, BatchEncoding)):
|
472 |
+
# encoded_inputs = {key: [example[key] for example in encoded_inputs] for key in encoded_inputs[0].keys()}
|
473 |
+
|
474 |
+
# # The model's main input name, usually `input_ids`, has be passed for padding
|
475 |
+
# if self.model_input_names[0] not in encoded_inputs:
|
476 |
+
# raise ValueError(
|
477 |
+
# "You should supply an encoding or a list of encodings to this method "
|
478 |
+
# f"that includes {self.model_input_names[0]}, but you provided {list(encoded_inputs.keys())}"
|
479 |
+
# )
|
480 |
+
|
481 |
+
# required_input = encoded_inputs[self.model_input_names[0]]
|
482 |
+
|
483 |
+
# if not required_input:
|
484 |
+
# if return_attention_mask:
|
485 |
+
# encoded_inputs["attention_mask"] = []
|
486 |
+
# return encoded_inputs
|
487 |
+
|
488 |
+
# # If we have PyTorch/TF/NumPy tensors/arrays as inputs, we cast them as python objects
|
489 |
+
# # and rebuild them afterwards if no return_tensors is specified
|
490 |
+
# # Note that we lose the specific device the tensor may be on for PyTorch
|
491 |
+
|
492 |
+
# first_element = required_input[0]
|
493 |
+
# if isinstance(first_element, (list, tuple)):
|
494 |
+
# # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
|
495 |
+
# index = 0
|
496 |
+
# while len(required_input[index]) == 0:
|
497 |
+
# index += 1
|
498 |
+
# if index < len(required_input):
|
499 |
+
# first_element = required_input[index][0]
|
500 |
+
# # At this state, if `first_element` is still a list/tuple, it's an empty one so there is nothing to do.
|
501 |
+
# if not isinstance(first_element, (int, list, tuple)):
|
502 |
+
# if is_tf_available() and _is_tensorflow(first_element):
|
503 |
+
# return_tensors = "tf" if return_tensors is None else return_tensors
|
504 |
+
# elif is_torch_available() and _is_torch(first_element):
|
505 |
+
# return_tensors = "pt" if return_tensors is None else return_tensors
|
506 |
+
# elif isinstance(first_element, np.ndarray):
|
507 |
+
# return_tensors = "np" if return_tensors is None else return_tensors
|
508 |
+
# else:
|
509 |
+
# raise ValueError(
|
510 |
+
# f"type of {first_element} unknown: {type(first_element)}. "
|
511 |
+
# f"Should be one of a python, numpy, pytorch or tensorflow object."
|
512 |
+
# )
|
513 |
+
|
514 |
+
# for key, value in encoded_inputs.items():
|
515 |
+
# encoded_inputs[key] = to_py_obj(value)
|
516 |
+
|
517 |
+
# # Convert padding_strategy in PaddingStrategy
|
518 |
+
# padding_strategy, _, max_length, _ = self._get_padding_truncation_strategies(
|
519 |
+
# padding=padding, max_length=max_length, verbose=verbose
|
520 |
+
# )
|
521 |
+
|
522 |
+
# required_input = encoded_inputs[self.model_input_names[0]]
|
523 |
+
# if required_input and not isinstance(required_input[0][0], (list, tuple)):
|
524 |
+
# encoded_inputs = self._pad(
|
525 |
+
# encoded_inputs,
|
526 |
+
# max_length=max_length,
|
527 |
+
# padding_strategy=padding_strategy,
|
528 |
+
# pad_to_multiple_of=pad_to_multiple_of,
|
529 |
+
# return_attention_mask=return_attention_mask,
|
530 |
+
# )
|
531 |
+
# return BatchEncoding(encoded_inputs, tensor_type=return_tensors)
|
532 |
+
|
533 |
+
# batch_size = len(required_input)
|
534 |
+
# assert all(
|
535 |
+
# len(v) == batch_size for v in encoded_inputs.values()
|
536 |
+
# ), "Some items in the output dictionary have a different batch size than others."
|
537 |
+
|
538 |
+
# if padding_strategy == PaddingStrategy.LONGEST:
|
539 |
+
# max_length = max(len(inputs) for inputs in required_input)
|
540 |
+
# padding_strategy = PaddingStrategy.MAX_LENGTH
|
541 |
+
|
542 |
+
# batch_outputs = {}
|
543 |
+
# for i in range(batch_size):
|
544 |
+
# inputs = dict((k, v[i]) for k, v in encoded_inputs.items())
|
545 |
+
# outputs = self._pad(
|
546 |
+
# inputs,
|
547 |
+
# max_length=max_length,
|
548 |
+
# padding_strategy=padding_strategy,
|
549 |
+
# pad_to_multiple_of=pad_to_multiple_of,
|
550 |
+
# return_attention_mask=return_attention_mask,
|
551 |
+
# )
|
552 |
+
|
553 |
+
# for key, value in outputs.items():
|
554 |
+
# if key not in batch_outputs:
|
555 |
+
# batch_outputs[key] = []
|
556 |
+
# batch_outputs[key].append(value)
|
557 |
+
|
558 |
+
# return BatchEncoding(batch_outputs, tensor_type=return_tensors)
|
559 |
+
|
560 |
+
# def _pad(
|
561 |
+
# self,
|
562 |
+
# encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
563 |
+
# max_length: Optional[int] = None,
|
564 |
+
# padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
565 |
+
# pad_to_multiple_of: Optional[int] = None,
|
566 |
+
# return_attention_mask: Optional[bool] = None,
|
567 |
+
# ) -> dict:
|
568 |
+
# """
|
569 |
+
# Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
570 |
+
|
571 |
+
# Args:
|
572 |
+
# encoded_inputs:
|
573 |
+
# Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
574 |
+
# max_length: maximum length of the returned list and optionally padding length (see below).
|
575 |
+
# Will truncate by taking into account the special tokens.
|
576 |
+
# padding_strategy: PaddingStrategy to use for padding.
|
577 |
+
|
578 |
+
# - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
579 |
+
# - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
580 |
+
# - PaddingStrategy.DO_NOT_PAD: Do not pad
|
581 |
+
# The tokenizer padding sides are defined in self.padding_side:
|
582 |
+
|
583 |
+
# - 'left': pads on the left of the sequences
|
584 |
+
# - 'right': pads on the right of the sequences
|
585 |
+
# pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
586 |
+
# This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
587 |
+
# >= 7.5 (Volta).
|
588 |
+
# return_attention_mask:
|
589 |
+
# (optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
590 |
+
# """
|
591 |
+
# # Load from model defaults
|
592 |
+
# if return_attention_mask is None:
|
593 |
+
# return_attention_mask = "attention_mask" in self.model_input_names
|
594 |
+
|
595 |
+
# required_input = encoded_inputs[self.model_input_names[0]]
|
596 |
+
|
597 |
+
# if padding_strategy == PaddingStrategy.LONGEST:
|
598 |
+
# max_length = len(required_input)
|
599 |
+
|
600 |
+
# if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
601 |
+
# max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
602 |
+
|
603 |
+
# needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
604 |
+
|
605 |
+
# if needs_to_be_padded:
|
606 |
+
# difference = max_length - len(required_input)
|
607 |
+
# if self.padding_side == "right":
|
608 |
+
# if return_attention_mask:
|
609 |
+
# encoded_inputs["attention_mask"] = [1] * len(required_input) + [0] * difference
|
610 |
+
# if "token_type_ids" in encoded_inputs:
|
611 |
+
# encoded_inputs["token_type_ids"] = (
|
612 |
+
# encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
|
613 |
+
# )
|
614 |
+
# if "special_tokens_mask" in encoded_inputs:
|
615 |
+
# encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
|
616 |
+
# encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
|
617 |
+
# elif self.padding_side == "left":
|
618 |
+
# if return_attention_mask:
|
619 |
+
# encoded_inputs["attention_mask"] = [0] * difference + [1] * len(required_input)
|
620 |
+
# if "token_type_ids" in encoded_inputs:
|
621 |
+
# encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
|
622 |
+
# "token_type_ids"
|
623 |
+
# ]
|
624 |
+
# if "special_tokens_mask" in encoded_inputs:
|
625 |
+
# encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
626 |
+
# encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
627 |
+
# else:
|
628 |
+
# raise ValueError("Invalid padding strategy:" + str(self.padding_side))
|
629 |
+
# elif return_attention_mask and "attention_mask" not in encoded_inputs:
|
630 |
+
# if isinstance(encoded_inputs["token_type_ids"], list):
|
631 |
+
# encoded_inputs["attention_mask"] = [1] * len(required_input)
|
632 |
+
# else:
|
633 |
+
# encoded_inputs["attention_mask"] = 1
|
634 |
+
|
635 |
+
# return encoded_inputs
|
636 |
+
|
637 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
638 |
+
logger.warning("CharacterBERT does not have a token vocabulary. " "Skipping saving `vocab.txt`.")
|
639 |
+
return ()
|
640 |
+
|
641 |
+
def save_mlm_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
642 |
+
# NOTE: CharacterBERT has no token vocabulary, this is just to allow
|
643 |
+
# saving tokenizer configuration via CharacterBertTokenizer.save_pretrained
|
644 |
+
if os.path.isdir(save_directory):
|
645 |
+
vocab_file = os.path.join(
|
646 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + "mlm_vocab.txt"
|
647 |
+
)
|
648 |
+
else:
|
649 |
+
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
650 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
651 |
+
for _, token in self.ids_to_tokens.items():
|
652 |
+
f.write(token + "\n")
|
653 |
+
return (vocab_file,)
|
654 |
+
|
655 |
+
def _save_pretrained(
|
656 |
+
self,
|
657 |
+
save_directory: Union[str, os.PathLike],
|
658 |
+
file_names: Tuple[str],
|
659 |
+
legacy_format: Optional[bool] = None,
|
660 |
+
filename_prefix: Optional[str] = None,
|
661 |
+
) -> Tuple[str]:
|
662 |
+
"""
|
663 |
+
Save a tokenizer using the slow-tokenizer/legacy format: vocabulary + added tokens.
|
664 |
+
|
665 |
+
Fast tokenizers can also be saved in a unique JSON file containing {config + vocab + added-tokens} using the
|
666 |
+
specific [`~tokenization_utils_fast.PreTrainedTokenizerFast._save_pretrained`]
|
667 |
+
"""
|
668 |
+
if legacy_format is False:
|
669 |
+
raise ValueError(
|
670 |
+
"Only fast tokenizers (instances of PreTrainedTokenizerFast) can be saved in non legacy format."
|
671 |
+
)
|
672 |
+
|
673 |
+
save_directory = str(save_directory)
|
674 |
+
|
675 |
+
added_tokens_file = os.path.join(
|
676 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + ADDED_TOKENS_FILE
|
677 |
+
)
|
678 |
+
added_vocab = self.get_added_vocab()
|
679 |
+
if added_vocab:
|
680 |
+
with open(added_tokens_file, "w", encoding="utf-8") as f:
|
681 |
+
out_str = json.dumps(added_vocab, ensure_ascii=False)
|
682 |
+
f.write(out_str)
|
683 |
+
logger.info(f"added tokens file saved in {added_tokens_file}")
|
684 |
+
|
685 |
+
vocab_files = self.save_mlm_vocabulary(save_directory, filename_prefix=filename_prefix)
|
686 |
+
|
687 |
+
return file_names + vocab_files + (added_tokens_file,)
|
688 |
+
|
689 |
+
|
690 |
+
class BasicTokenizer(object):
|
691 |
+
"""
|
692 |
+
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
|
693 |
+
|
694 |
+
Args:
|
695 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
696 |
+
Whether or not to lowercase the input when tokenizing.
|
697 |
+
never_split (`Iterable`, *optional*):
|
698 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
699 |
+
`do_basic_tokenize=True`
|
700 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
701 |
+
Whether or not to tokenize Chinese characters.
|
702 |
+
|
703 |
+
This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)).
|
704 |
+
strip_accents: (`bool`, *optional*):
|
705 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
706 |
+
value for `lowercase` (as in the original BERT).
|
707 |
+
"""
|
708 |
+
|
709 |
+
def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None):
|
710 |
+
if never_split is None:
|
711 |
+
never_split = []
|
712 |
+
self.do_lower_case = do_lower_case
|
713 |
+
self.never_split = set(never_split)
|
714 |
+
self.tokenize_chinese_chars = tokenize_chinese_chars
|
715 |
+
self.strip_accents = strip_accents
|
716 |
+
|
717 |
+
def tokenize(self, text, never_split=None):
|
718 |
+
"""
|
719 |
+
Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see
|
720 |
+
WordPieceTokenizer.
|
721 |
+
|
722 |
+
Args:
|
723 |
+
**never_split**: (*optional*) list of str
|
724 |
+
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
725 |
+
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
|
726 |
+
"""
|
727 |
+
# union() returns a new set by concatenating the two sets.
|
728 |
+
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
|
729 |
+
text = self._clean_text(text)
|
730 |
+
|
731 |
+
# This was added on November 1st, 2018 for the multilingual and Chinese
|
732 |
+
# models. This is also applied to the English models now, but it doesn't
|
733 |
+
# matter since the English models were not trained on any Chinese data
|
734 |
+
# and generally don't have any Chinese data in them (there are Chinese
|
735 |
+
# characters in the vocabulary because Wikipedia does have some Chinese
|
736 |
+
# words in the English Wikipedia.).
|
737 |
+
if self.tokenize_chinese_chars:
|
738 |
+
text = self._tokenize_chinese_chars(text)
|
739 |
+
orig_tokens = whitespace_tokenize(text)
|
740 |
+
split_tokens = []
|
741 |
+
for token in orig_tokens:
|
742 |
+
if token not in never_split:
|
743 |
+
if self.do_lower_case:
|
744 |
+
token = token.lower()
|
745 |
+
if self.strip_accents is not False:
|
746 |
+
token = self._run_strip_accents(token)
|
747 |
+
elif self.strip_accents:
|
748 |
+
token = self._run_strip_accents(token)
|
749 |
+
split_tokens.extend(self._run_split_on_punc(token, never_split))
|
750 |
+
|
751 |
+
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
752 |
+
return output_tokens
|
753 |
+
|
754 |
+
def _run_strip_accents(self, text):
|
755 |
+
"""Strips accents from a piece of text."""
|
756 |
+
text = unicodedata.normalize("NFD", text)
|
757 |
+
output = []
|
758 |
+
for char in text:
|
759 |
+
cat = unicodedata.category(char)
|
760 |
+
if cat == "Mn":
|
761 |
+
continue
|
762 |
+
output.append(char)
|
763 |
+
return "".join(output)
|
764 |
+
|
765 |
+
def _run_split_on_punc(self, text, never_split=None):
|
766 |
+
"""Splits punctuation on a piece of text."""
|
767 |
+
if never_split is not None and text in never_split:
|
768 |
+
return [text]
|
769 |
+
chars = list(text)
|
770 |
+
i = 0
|
771 |
+
start_new_word = True
|
772 |
+
output = []
|
773 |
+
while i < len(chars):
|
774 |
+
char = chars[i]
|
775 |
+
if _is_punctuation(char):
|
776 |
+
output.append([char])
|
777 |
+
start_new_word = True
|
778 |
+
else:
|
779 |
+
if start_new_word:
|
780 |
+
output.append([])
|
781 |
+
start_new_word = False
|
782 |
+
output[-1].append(char)
|
783 |
+
i += 1
|
784 |
+
|
785 |
+
return ["".join(x) for x in output]
|
786 |
+
|
787 |
+
def _tokenize_chinese_chars(self, text):
|
788 |
+
"""Adds whitespace around any CJK character."""
|
789 |
+
output = []
|
790 |
+
for char in text:
|
791 |
+
cp = ord(char)
|
792 |
+
if self._is_chinese_char(cp):
|
793 |
+
output.append(" ")
|
794 |
+
output.append(char)
|
795 |
+
output.append(" ")
|
796 |
+
else:
|
797 |
+
output.append(char)
|
798 |
+
return "".join(output)
|
799 |
+
|
800 |
+
def _is_chinese_char(self, cp):
|
801 |
+
"""Checks whether CP is the codepoint of a CJK character."""
|
802 |
+
# This defines a "chinese character" as anything in the CJK Unicode block:
|
803 |
+
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
804 |
+
#
|
805 |
+
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
806 |
+
# despite its name. The modern Korean Hangul alphabet is a different block,
|
807 |
+
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
808 |
+
# space-separated words, so they are not treated specially and handled
|
809 |
+
# like the all of the other languages.
|
810 |
+
if (
|
811 |
+
(cp >= 0x4E00 and cp <= 0x9FFF)
|
812 |
+
or (cp >= 0x3400 and cp <= 0x4DBF) #
|
813 |
+
or (cp >= 0x20000 and cp <= 0x2A6DF) #
|
814 |
+
or (cp >= 0x2A700 and cp <= 0x2B73F) #
|
815 |
+
or (cp >= 0x2B740 and cp <= 0x2B81F) #
|
816 |
+
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
|
817 |
+
or (cp >= 0xF900 and cp <= 0xFAFF)
|
818 |
+
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
|
819 |
+
): #
|
820 |
+
return True
|
821 |
+
|
822 |
+
return False
|
823 |
+
|
824 |
+
def _clean_text(self, text):
|
825 |
+
"""Performs invalid character removal and whitespace cleanup on text."""
|
826 |
+
output = []
|
827 |
+
for char in text:
|
828 |
+
cp = ord(char)
|
829 |
+
if cp == 0 or cp == 0xFFFD or _is_control(char):
|
830 |
+
continue
|
831 |
+
if _is_whitespace(char):
|
832 |
+
output.append(" ")
|
833 |
+
else:
|
834 |
+
output.append(char)
|
835 |
+
return "".join(output)
|
836 |
+
|
837 |
+
|
838 |
+
class CharacterMapper:
|
839 |
+
"""
|
840 |
+
NOTE: Adapted from ElmoCharacterMapper:
|
841 |
+
https://github.com/allenai/allennlp/blob/main/allennlp/data/token_indexers/elmo_indexer.py Maps individual tokens
|
842 |
+
to sequences of character ids, compatible with CharacterBERT.
|
843 |
+
"""
|
844 |
+
|
845 |
+
# char ids 0-255 come from utf-8 encoding bytes
|
846 |
+
# assign 256-300 to special chars
|
847 |
+
beginning_of_sentence_character = 256 # <begin sentence>
|
848 |
+
end_of_sentence_character = 257 # <end sentence>
|
849 |
+
beginning_of_word_character = 258 # <begin word>
|
850 |
+
end_of_word_character = 259 # <end word>
|
851 |
+
padding_character = 260 # <padding> | short tokens are padded using this + 1
|
852 |
+
mask_character = 261 # <mask>
|
853 |
+
|
854 |
+
bos_token = "[CLS]" # previously: bos_token = "<S>"
|
855 |
+
eos_token = "[SEP]" # previously: eos_token = "</S>"
|
856 |
+
pad_token = "[PAD]"
|
857 |
+
mask_token = "[MASK]"
|
858 |
+
|
859 |
+
def __init__(
|
860 |
+
self,
|
861 |
+
max_word_length: int = 50,
|
862 |
+
):
|
863 |
+
self.max_word_length = max_word_length
|
864 |
+
self.beginning_of_sentence_characters = self._make_char_id_sequence(self.beginning_of_sentence_character)
|
865 |
+
self.end_of_sentence_characters = self._make_char_id_sequence(self.end_of_sentence_character)
|
866 |
+
self.mask_characters = self._make_char_id_sequence(self.mask_character)
|
867 |
+
# This is the character id sequence for the pad token (i.e. [PAD]).
|
868 |
+
# We remove 1 because we will add 1 later on and it will be equal to 0.
|
869 |
+
self.pad_characters = [PAD_TOKEN_CHAR_ID - 1] * self.max_word_length
|
870 |
+
|
871 |
+
def _make_char_id_sequence(self, character: int):
|
872 |
+
char_ids = [self.padding_character] * self.max_word_length
|
873 |
+
char_ids[0] = self.beginning_of_word_character
|
874 |
+
char_ids[1] = character
|
875 |
+
char_ids[2] = self.end_of_word_character
|
876 |
+
return char_ids
|
877 |
+
|
878 |
+
def convert_word_to_char_ids(self, word: str) -> List[int]:
|
879 |
+
if word == self.bos_token:
|
880 |
+
char_ids = self.beginning_of_sentence_characters
|
881 |
+
elif word == self.eos_token:
|
882 |
+
char_ids = self.end_of_sentence_characters
|
883 |
+
elif word == self.mask_token:
|
884 |
+
char_ids = self.mask_characters
|
885 |
+
elif word == self.pad_token:
|
886 |
+
char_ids = self.pad_characters
|
887 |
+
else:
|
888 |
+
# Convert characters to indices
|
889 |
+
word_encoded = word.encode("utf-8", "ignore")[: (self.max_word_length - 2)]
|
890 |
+
# Initialize character_ids with padding
|
891 |
+
char_ids = [self.padding_character] * self.max_word_length
|
892 |
+
# First character is BeginningOfWord
|
893 |
+
char_ids[0] = self.beginning_of_word_character
|
894 |
+
# Populate character_ids with computed indices
|
895 |
+
for k, chr_id in enumerate(word_encoded, start=1):
|
896 |
+
char_ids[k] = chr_id
|
897 |
+
# Last character is EndOfWord
|
898 |
+
char_ids[len(word_encoded) + 1] = self.end_of_word_character
|
899 |
+
|
900 |
+
# +1 one for masking so that character padding == 0
|
901 |
+
# char_ids domain is therefore: (1, 256) for actual characters
|
902 |
+
# and (257-262) for special symbols (BOS/EOS/BOW/EOW/padding/MLM Mask)
|
903 |
+
return [c + 1 for c in char_ids]
|
904 |
+
|
905 |
+
def convert_char_ids_to_word(self, char_ids: List[int]) -> str:
|
906 |
+
"Converts a sequence of character ids into its corresponding word."
|
907 |
+
|
908 |
+
assert len(char_ids) <= self.max_word_length, (
|
909 |
+
f"Got character sequence of length {len(char_ids)} while `max_word_length={self.max_word_length}`"
|
910 |
+
)
|
911 |
+
|
912 |
+
char_ids_ = [(i - 1) for i in char_ids]
|
913 |
+
if char_ids_ == self.beginning_of_sentence_characters:
|
914 |
+
return self.bos_token
|
915 |
+
elif char_ids_ == self.end_of_sentence_characters:
|
916 |
+
return self.eos_token
|
917 |
+
elif char_ids_ == self.mask_characters:
|
918 |
+
return self.mask_token
|
919 |
+
elif char_ids_ == self.pad_characters: # token padding
|
920 |
+
return self.pad_token
|
921 |
+
else:
|
922 |
+
utf8_codes = list(
|
923 |
+
filter(
|
924 |
+
lambda x: (x != self.padding_character)
|
925 |
+
and (x != self.beginning_of_word_character)
|
926 |
+
and (x != self.end_of_word_character),
|
927 |
+
char_ids_,
|
928 |
+
)
|
929 |
+
)
|
930 |
+
return bytes(utf8_codes).decode("utf-8")
|
tokenizer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"max_word_length": 50, "do_lower_case": true, "do_basic_tokenize": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
|
|
1 |
+
{"name_or_path": "helboukkouri/character-bert-medical", "tokenizer_class": "CharacterBertTokenizer", "max_word_length": 50, "do_lower_case": true, "do_basic_tokenize": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "auto_map": {"AutoTokenizer": ["tokenization_character_bert.CharacterBertTokenizer", null]}}
|