Mamba2-mRNA
Mamba2-mRNA is a state-space model built on the Mamba2 architecture, trained at single-nucleotide resolution. This innovative model offers several advantages, including faster processing speeds compared to traditional transformer models, efficient handling of long sequences, and reduced memory requirements. Its state-space approach enables better modeling of biological sequences by capturing both local and long-range dependencies in mRNA data. The single-nucleotide resolution allows for precise prediction and analysis of genetic elements.
Helical
Install the package
Run the following to install the Helical package via pip:
pip install --upgrade helical
Generate Embeddings
from helical import Mamba2mRNA, Mamba2mRNAConfig
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
input_sequences = ["ACU"*20, "AUG"*20, "AUG"*20, "ACU"*20, "AUU"*20]
mamba2_mrna_config = Mamba2mRNAConfig(batch_size=5, device=device)
mamba2_mrna = Mamba2mRNA(configurer=mamba2_mrna_config)
# prepare data for input to the model
processed_input_data = mamba2_mrna.process_data(input_sequences)
# generate the embeddings for the input data
embeddings = mamba2_mrna.get_embeddings(processed_input_data)
Fine-Tuning
Classification fine-tuning example:
from helical import Mamba2mRNAFineTuningModel, Mamba2mRNAConfig
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
input_sequences = ["ACU"*20, "AUG"*20, "AUG"*20, "ACU"*20, "AUU"*20]
labels = [0, 2, 2, 0, 1]
mamba2_mrna_config = Mamba2mRNAConfig(batch_size=5, device=device, max_length=100)
mamba2_mrna_fine_tune = Mamba2mRNAFineTuningModel(mamba2_mrna_config=mamba2_mrna_config, fine_tuning_head="classification", output_size=3)
# prepare data for input to the model
train_dataset = mamba2_mrna_fine_tune.process_data(input_sequences)
# fine-tune the model with the relevant training labels
mamba2_mrna_fine_tune.train(train_dataset=train_dataset, train_labels=labels)
# get outputs from the fine-tuned model on a processed dataset
outputs = mamba2_mrna_fine_tune.get_outputs(train_dataset)
- Downloads last month
- 859